Яблочков Павел Николаевич

ГЛАВА ЧЕТВЕРТАЯ

ПАВЕЛ НИКОЛАЕВИЧ ЯБЛОЧКОВ

(1847–1894)

Оба крупнейших физика своего времени — и проф. В. В. Петров, открывший вольтову дугу в Петербурге в 1802 г., и Гемфри Дэви, демонстрировавший ее десять лет спустя в 1813 г. в Лондоне, — были прежде всего поражены яркостью светового явления, сопровождающего дугу, и оба указали на возможность применения ее для освещения. Между угольными электродами дуги, писал Петров, появляется «свет или пламя, от которого темный покой освещен быть может». Дэви также указывает на возможность применения вольтовой дуги для получения мощных источников света, нужных, например, для маяков и т. п. Однако, потребовалось несколько десятков лет для того, чтобы вольтова дуга получила действительно практическое применение в качестве источника света. Причин к этому было, конечно, много, но главными были две: отсутствие достаточно простого, надежного и экономичного источника тока и отсутствие удобной и простой «дуговой электрической лампы».

Не только вольтов столб, которым пользовались и Петров и Дэви, но и непрерывно совершенствовавшиеся гальванические элементы не могли служить удобным, надежным и экономическим источником тока. Сложность ухода, малый коэффициент полезного действия, громоздкость сколько-нибудь мощных батарей, а главное, высокая стоимость расходовавшегося в батареях цинка, делали широкое применение этого рода источников тока неприемлемым.

Однако, потребность в ярких мощных источниках света была так велика, что в отдельных случаях мирились со всеми недостатками громоздких гальванических батарей и применяли их для питания тех дуговых ламп — «регуляторов», как их называли, которые специально для этих целей и изобретались. Уже в 1846 г. таким «солнцем», помещенным на башне Адмиралтейства в Петербурге, пытались осветили три уличные магистрали, идущие от Адмиралтейства. — Невский и Вознесенский проспекты и частью Гороховую улицу.

В 1856 г. в Москве, во время торжеств по случаю коронования императора Александра II, во время иллюминации горели «электрические солнца». Эти «солнца» были устроены русским изобретателем Шпаковским, придумавшим специальную конструкцию электрических дуговых ламп, которые питались от большой батареи в 600 элементов Бунзена.

Приблизительно в то же время Фуко и Физо применили регулятор Фуко, питаемый от батареи в 48 элементов Бунзена, для своих исследований над светом, определили, что дуга в 7 мм длины дает 572 свечи, и пришли к заключению, что яркость солнца относится к яркости дуги, как 3:1.

Значительно позже электрическое освещение дуговыми регуляторами, питаемыми тоже от батареи бунзеновских элементов, было устроено в Париже.

Были, конечно, и другие случаи освещения электрическими дуговыми лампами, питаемыми от гальванических батарей, но все это были единичные случаи. Для широкого практического применения электрического освещения нужны были другие, более совершенные источники тока, и они, конечно, явились.

Открытие в 1831 г. Фарадеем явления электромагнитной индукции, позволявшего простейшим путем, вращая систему проводников в магнитном поле, превращать любой вид механической энергии в электрическую, дало новый путь для изобретения источников тока, приведший постепенно к изобретению тех электрических генераторов (магнитоэлектрических машин, динамоэлектрических машин, альтернаторов), которыми электротехника пользуется и теперь.

История развития этих генераторов интересна и поучительна [12]. Изобретателям и конструкторам пришлось преодолеть множество всякого рода затруднений при разработке и конструировании машин Мешало разработке машин и то, что, особенно в период изобретения первых машин, учение об электрических и об электромагнитных явлениях было еще очень мало развито. Во многих случаях изобретателям приходилось решать вопросы чисто интуитивно, основываясь на каких-либо своих априорных соображениях. Это часто приводило к ошибочным решениям, к конструкциям столь нерациональным, что теперь нам трудно даже понять, в результате каких соображений могли являться эти конструкции.

Но плохие или хорошие, все же новые типы генераторов электрического тока появились. Одно из главных достоинств новых генераторов было то, что при их помощи можно было простейшим способом превращать механическую энергию, хотя бы обычной паровой машины, в энергию электрического тока. Естественно, что сейчас же после появления этих генераторов начались попытки применить их для питания известных уже дуговых электрических ламп. Первыми были применены магнитоэлектрические машины. В качестве ламп применялись существовавшие уже типы дуговых электрических «регуляторов», главным образом, Фуко и Серрена.

Одной из первых установок электрического освещения от магнитоэлектрической машины была установка в Париже на набережной р. Сены. Работала машина «Аллианс», вращаемая паровым двигателем. В качестве источника света служил регулятор Серрена, дававший свет в 2000 свечей. Стоимость расходуемого под котлом кокса была 18 сантимов в час. Для доказательства экономичности работы ламп на токе, получаемом от электрической машины, было произведено сравнение стоимости получения 350 свечей от разных источников тока и разных источников света. При сравнении были получены следующие результаты:

Электрический регулятор, питаемый от машины „Аллианс" …………………. 0,63 франка/час

Газовая лампа, при цене газа 15 сан тимов за куб. метр………………………… 0,8

То же при обычной продажной цене газа…………………………………………………………………… 1,6 „

Электрический регулятор от галь ванической батареи…………………….. 3,0

Карсельская лампа* на сурепном масле……………………………………………. 3,03


* Лампы с искусственным дутьем, в которых горело растительное масло, очень распространенные во Франции, давали силу света около 10 свечей.


Таким образом, даже при пользовании весьма несовершенными машинами и лампами электрический свет оказался дешевым. В дальнейшем электрические машины непрерывно совершенствовались. Тяжелые и громоздкие постоянные магниты были заменены электромагнитами, был открыт принцип самовозбуждения машин. Был изобретен коллектор, позволявший получать от машин не только переменный, как было раньше, но и постоянный ток. Было сделано в машинах еще много других усовершенствований, улучшавших работу машин и повышавших их коэффициент полезного действия. Несмотря на это, электрическое освещение все же не развивалось.

Причиной стало уже не плохое качество генераторов тока, а несовершенство имевшихся дуговых ламп, по своей сложности, дороговизне и ненадежности мало стимулировавших широкое применение электрического света. Ясно, что при таких лампах вопрос о применении дуговых ламп для потребностей обычного освещения не мог быть решен. Решил его впервые Павел Николаевич Яблочков изобретением своей «электрической свечи».

Изобретение этой свечи дало толчок не только к быстрому развитию электрического освещения, но и к появлению целого ряда других изобретений, сделанных или самим Яблочковым, или другими изобретателями, изобретений, получивших в дальнейшем громадное значение в деле развития электротехники вообще.

П. Н. Яблочков происходил из помещичьей среды средней руки. Повидимому, члены его семьи имели некоторое образование и даже проявляли некоторый интерес к литературе. Имеются сведения, что бабка Павла Николаевича устраивала у себя в деревне спектакли и даже писала для них пьесы, которые и разыгрывались крепостными актерами. Эта бабушка Павла Николаевича была рожденная Бегичева, сестра двух Бегичевых: С. Н. Бегичева, известного друга Грибоедова, и Д. Н. Бегичева, автора популярного в свое время романа «Семейство Холмских». Семья была близка с поэтом-партизаном Денисом Давыдовым и с некоторыми декабристами, которые бывали у Яблочковых в имении. Все Яблочковы были, повидимому, инициативными и настойчивыми людьми. Дед Павла Николаевича, получив от отца небольшое имение и 150 душ крепостных в Ефремовском уезде Тульской губернии, развил широкую деятельность сначала по покупке, улучшению и перепродаже земельных угодий. Приобретя довольно большое состояние, он занялся самым прибыльным в то время, но и рискованным делом — откупами, взяв на откуп целую губернию. Он сам проектировал и строил водяные мельницы, винокуренные заводы и даже паровые котлы собственной конструкции. Правда, первый построенный им котёл взорвался, но это не испугало смелого строителя и он добился постройки хороших котлов. На этом откупном деле дед П. Н. Яблочкова разорился и умер в бедности.

После смерти старика дети его остались без всяких средств и не могли даже окончить своего образования. Полученное отцом Яблочкова по наследству от дядюшки имение в Саратовской губернии, в Сердобском уезде, несколько поправило положение семьи. В этом имении и родился 14 сентября 1847 г. будущий знаменитый изобретатель. Начальную учебную подготовку Павел Николаевич получил дома. Затем был помещен отцом во второй класс Саратовской гимназии. Но в гимназии молодой Яблочков оставался недолго; уже в 1862 г., т. е. пятнадцати лет, он оставил гимназию, выйдя из 5-го класса. Затем он был помещен в частный подготовительный пансион в Петербурге. Пансион содержал военный инженер Цезарь Антонович Кюи, впоследствии известный композитор, участник знаменитой «могучей кучки», к которой принадлежали наши крупнейшие композиторы: Мусоргский, Балакирев, Бородин и др. Ц. А. Кюи был одновременно профессором фортификации в Военно-инженерной академии. Из его пансиона Павел Николаевич поступил в 1863 г. в Военно-инженерное училище. «В службу вступил кондуктором в Кондукторскую роту Николаевского Инженерного училища Сентября 30 1867 г.», записано в «Полном послужном списке» Павла Николаевича Яблочкова.

Дальнейшая военная служба Павла Николаевича шла так:

В 1866 г. он окончил Инженерное училище и был выпущен в 5-й (Киевский) саперный батальон с чином подпоручика. В 1867 г., по своему желанию, уволен от службы. В 1869 г. вновь принят на военную службу в тот же 5-й саперный батальон с откомандированием в Техническое гальваническое заведение в Петербурге. По окончании курса в названном заведении возвращен в сентябре 1869 г. в свой саперный батальон в Киев, где оставался до 1871 г… когда был произведен в чин поручика и в 1872 г. уволен вовсе от службы. В Киеве Яблочков женился на молодой учительнице Любови Ильинишне Никитиной. Так кончилась военная карьера Павла Николаевича. Вся остальная его жизнь была посвящена изобретательской деятельности. Военно-инженерное училище, в котором получил образование Павел Николаевич, представляло нечто промежуточное между средним и высшим учебным заведением, принимались в него только лица с законченным средним образованием, но окончившие Инженерное училище прав окончивших высшую школу не получали. Они выпускались саперными офицерами и, чтобы получить звание военного инженера, должны были проучиться еще 3 года в Военно-инженерной академии. В Инженерную академию Яблочков не поступил и формально на всю жизнь оставался саперным поручиком в отставке. Образование, полученное Яблочковым в Военно-инженерном училище, было, конечно, не очень широкое, но все же математические дисциплины проходились в училище хорошо. Еще были свежи предания о времени, когда в числе преподавателей училища были такие лица, как знаменитый математик академик Остроградский, и еще были налицо такие преподаватели, как проф. Николай Павлович Петров, прославившийся, своими работами над явлениями трения, проф. И. А. Вышнеградский, читавший механику и термодинамику, и др. В Техническом гальваническом заведении Яблочков мог познакомиться, главным образом, с телеграфным и минным делом.

«Техническое гальваническое заведение» было оригинальным учреждением, частично офицерскими курсами по подготовке военных специалистов по минному и телеграфному делу, частично исследовательским институтом, частично, с состоявшей при заведении ротой солдат, воинской частью. В задачи заведения входило «специальное обучение гальванизму переходящего состава офицеров-курсантов, командировавшихся своими частями из лиц, имеющих основные сведения в физике и химии и вполне заслуживающих доверие начальства». Кроме выполнения этой задачи Гальваническое заведение должно было также заниматься «исследованием, развитием и усовершенствованием практических приложений гальванизма к инженерному искусству».

Это «Техническое Гальваническое заведение», вместе с Офицерским минным классом в Кронштадте, сыграло весьма большую роль в развитии электротехники в России. Это были единственные в то время в России рассадники сколько-нибудь сведущих в электротехнике специалистов. Гальваническое заведение позже, уже при военном министре Ванновском (впоследствии министр народного просвещения) было преобразовано в Офицерскую электротехническую школу, выпускавшую инженеров— военных электриков, а затем, уже при Советской власти, в Военно-электрическую академию. Впоследствии часть этой Академии была присоединена к Военно-инженерной академии, оставшаяся часть образовала Военно-электротехническую академию связи им. Буденного.

В организации Гальванического заведения принимал большое участие акад. Якоби, работавший тогда над электрическим взрыванием мин.

В Техническом гальваническом заведении Яблочков, конечно, мог пополнить свои сведения по физике и получить также некоторые сведения по электротехнике в тогдашнем ее состоянии, т. е. частично по минному делу, но, главным образом, по телеграфии. Поэтому нет ничего удивительного в том, что неудовлетворенный условиями военной службы, Павел Николаевич, выйдя окончательно в отставку, искал себе службу, связанную с телеграфным делом, т. е. там, где он мог бы применить свои знания. Эту службу он нашел на Московско-Курской железной дороге незадолго перед тем построенной, на которую он и поступил в качестве начальника службы телеграфа.

Начало 70-х годов XIX в., когда Яблочков переехал в Москву, было временем, когда только что начинали интересоваться практическими применениями электричества. Электротехника в том смысле слова, как его мы понимаем теперь, еще не существовала, но отдельные ее отрасли начинали развиваться. Так стали появляться усовершенствованные генераторы электрического тока (машины Сименса, Грамма и др.), развивались применения гальванопластики и электролиза, делались, правда отдельные, попытки применять и электрическое освещение. В связи с развившимся строительством железных дорог сильно расширялось применение электрических телеграфов и начинала применяться электрическая железнодорожная сигнализация.

«Век Его Величества Пара» был еще в полном расцвете, но приближение «Века Электричества» уже чувствовалось. Увлечение изобретательством в области электричества не могло не захватить молодого человека, работавшего в этой области, в особенности такого человека, каким был Яблочков, с его инициативностью и наследственной изобретательской жилкой. Еще мальчиком, в деревне он изобретал какие-то примитивные землемерные инструменты и устраивал на телегах приспособления, которые позволяли бы по числу оборотов колеса судить о пройденном телегой расстоянии. Судя по отрывочным сведениям, полученным от родных Павла Николаевича, некоторые из этих изобретений оказались достаточно практичными и применялись местными крестьянами. По своему характеру Яблочков, работая на железной дороге, не мог довольствоваться одним исполнением своих прямых служебных обязанностей. Он все время стремился пополнить свои знания и приложить свои силы для новых изобретений. Простое чтение книг его не удовлетворяло — он стремился войти в общение с другими работниками в интересовавшей его области и получить возможность работать экспериментально.

В то время в Москве был один центр, где встречались люди, интересовавшиеся наукой, в частности, химией, физикой и приложением этих наук к практическим целям. Это было «Императорское Общество любителей естествознания, антропологии и этнографии», состоявшее при Московском университете. Яблочков стал посещать заседания этого Общества и примкнул к образовавшемуся в Обществе кружку электротехников. В 1874 г. Яблочков был, по предложению Совета Общества, избран его действительным членом. Через 15 лет, в 1889 г., это звание было заменено новым: Общество избрало Павла Николаевича «в уважение заслуг по электротехнике» и за деятельное участие в трудах Общества своим почетным членом. Для техника, не бывшего ни академиком, ни доктором, ни профессором, в те времена такое избрание было исключительным событием. Но этот почет был еще впереди. Пока же, в 1872 г., Яблочков был лишь скромным посетителем Общества, где он встречался с университетскими физиками и химиками и где он, между прочим, встретился с другим крупным русским электротехником той же эпохи — Владимиром Николаевичем Чиколевым. Чиколев был немногим старше Яблочкова, года на два, но он был своим человеком в Москве, имевшим уже за собой несколько изобретений. Он, конечно, импонировал молодому начинающему электрику. Вся дальнейшая изобретательская жизнь Яблочкова прошла параллельно с жизнью Чиколева. Часто их мысли сходились, часто шли они по разным путям, но общая работа над вопросами электротехники связывала их всю жизнь. Вместе они основывали в Петербурге Электротехнический (VI) отдел Технического общества, вместе создавали первенца русских электротехнических журналов — журнал «Электричество», первым редактором которого и был В. Н. Чиколев. Чиколев в то время в Москве изобретал уже свои дуговые лампы с дифференциальным регулятором. Его сообщения вызвали и у Павла Николаевича интерес к вопросам электрического освещения и он сам стал ими заниматься. Одним из результатов этого увлечения электрическим освещением было предложение, сделанное Яблочковым администрации Курской железной дороги, применить в качестве головного фонаря на паровозе для освещения пути электрическую лампу. Предложение его получило осуществление, но, увы, всего только один раз. При поездке Александра II в Крым на паровозе, прицепленном в Москве, Яблочкову было разрешено установить электрический фонарь. Установлен был рефлектор с дуговой лампой системы Фуко (регулятор Фуко), лучшей лампой того времени. Но и эта лучшая лампа была очень ненадежна — требовала непрерывного наблюдения и регулировки. Яблочкову пришлось весь путь просидеть около фонаря на паровозе. Даже на остановках царского поезда Яблочков должен был оставаться около своего фонаря, так как при перемене паровоза надо было переносить фонарь и устраивать соединение лампы с вагоном, в котором помещалась питавшая лампу батарея бунзеновских элементов. С осветительной точки зрения полученные результаты были очень хороши, но с эксплоатационной они не могли, конечно, быть названы удачными.

Все же это был первый в мире, действительно реализованный, опыт применения электрического освещения на паровозе, к освещению пути на большом протяжении при сменных паровозах.

В дальнейшем такие применения повторялись, но это было уже при совершенно других условиях — уже существовали и усовершенстованные дуговые лампы и надежные динамоэлектрические машины, которые могли заменить громоздкую бунзеновскую батарею.

Павел Николаевич не долго оставался на железной дороге. Его изобретательские стремления не могли быть удовлетворены на этой службе и он сначала завел себе на свои средства небольшую лабораторию, а затем организовал в Москве мастерскую и магазин физических приборов. В мастерской Яблочков работал сначала с инж. Глуховым, затем с В. Н. Чиколевым, трудившимся над своей идеей применения принципа дифференциального действия двух катушек для устройства дуговой лампы. В этой мастерской были построены первые лампы Чиколева, являвшиеся видоизменением регуляторов Фуко и Серрена, к которым и был применен принцип дифференциального действия двух катушек.

Коммерческие дела Яблочкова пошли неуспешно. Уже тогда сказалась та «деловая» неспособность Павла Николаевича, которая ясно выявилась впоследствии. Это была та же неприспособленность, которая вызвала банкротство его деда и которая привела почти к разорению его отца, несмотря на то, что он владел достаточно крупным поместьем. Кредиторы осаждали Яблочкова. Повидимому, у него были кое-какие недоразумения с полицией, так как у него были связи с людьми, за которыми полиция следила. Были и семейные недоразумения. Чтобы покончить со всем этим, Яблочков решил расстаться с Россией и уехать в Америку.

В. Н. Чиколев в своих воспоминаниях пишет: «Яблочков уехал за границу вследствие настоятельных и совершенно определенных причин, очень хорошо известных мне и всем его знакомым». Сам Яблочков впоследствии, по возвращении в 1893 г. в Россию, говорил, что он «бежал за границу, чтобы не попасть в долговую яму» и что «жандармы, преследовавшие его до Одессы, где он сел на пароход, чтобы ехать через Францию в США, опоздали на 24 часа» и он успел благополучно скрыться из России.

Какие были у Яблочкова затруднения с русской полицией, трудно теперь установить, но одно известно, что когда в 1880 г. он, в зените своей славы, приезжал в Петербург, его вызывали в жандармское управление (III отделение Собственной Его Величества Канцелярии) и подвергли допросу. Какие-то затруднения были и со второй его женой Марией Николаевной Яблочковой, когда она приехала в 1893 г. в Россию к умирающему мужу. Быть может, одной из причин всех этих последующих недоразумений было общение Яблочкова и Марии Николаевны в Париже с русской эмиграцией.

Ликвидировав свою мастерскую и магазин и оставив жену и детей в деревне у родных, Павел Николаевич уехал, направляясь в Америку.

Соединенные Штаты считались тогда раем для изобретателей.

В Европу непрерывно доходили слухи о том или другом изобретателе, который, начав с чистки сапог на улице или продажи газет и спичек, становился в короткое время миллионером. В середине семидесятых годов стали уже доходить слухи и об Эдисоне, изобревшем новую систему телеграфирования, изобревшем фонограф и много других чудес. К тому же в 1875 г. в Филадельфии должна была открыться всемирная выставка, на которой изобретатели всех стран могли показать свои достижения. У Яблочкова к тому времени было уже одно изобретение, сделанное во время работы в его московской мастерской, на которое он возлагал большие надежды. Это был электромагнит с обмоткой, необычной формы, долженствовавшей придать электромагниту, по мнению Яблочкова, особую силу. С этим изобретением Яблочков и отправился в Америку. Но денег на поездку в США нехватило, и ему пришлось остаться в Париже, где он в октябре 1875 г. и начал работать.

Вот что пишет Мария Николаевна Яблочкова, вторая жена Павла Николаевича, верная сотрудница и спутница его до конца жизни: «Денег было мало — едва хватило доехать до Парижа, где он и застрял. В Париже он поселился в Латинском квартале и как всякий русский интеллигент той эпохи, стал посещать русскую библиотеку, где он познакомился с эмигрантами того времени Петром Лавровичем Лавровым и с Германом Александровичем Лопатиным, с которым он очень подружился. [13] Павел Николаевич не любил много говорить. Поэтому многие из окружающих называли его «не интересным», считали, что он «не умеет говорить». А между тем, редко можно было встретить более интересного человека, когда он хотел или когда встречал собеседника, с которым хотел поговорить. В Париже он поместился в Латинском квартале в студенческом пансионе Hotel de Midi на Rue Sommerard около музея Клюни. Нужно было видеть его комнату, в которой он жил и работал. Хозяин пансиона приходил в ужас, но вместе с тем интересовался тем, что фабрикует его жилец».

Париж в 70-х годах был одним из крупнейших центров, где велась работа по нарождавшейся новой отрасли техники — электротехнике. Ею занимались и ученые и изобретатели. Успехами электротехники интересовалась и Парижская академия наук. Существовало уже несколько заводов и более или менее крупных мастерских, где изготовлялись электрические машины и другие приборы. Среди них была известная мастерская Бреге. Это была старинная фирма, переходившая от отца к сыну, владельцы которой уже в трех поколениях совмещали свою промышленную деятельность с научной работой: работали в мастерских и одновременно были членами Парижской академии наук и Бюро долгот. Основным занятием фирмы Бреге было изготовление часов, приобревших мировую известность («Недремлющий Брегет» у Пушкина). Но постепенно мастерская стала изготовлять и разные физические приборы, а затем телеграфные и другие электрические аппараты и, наконец, динамомашины. Телеграфные аппараты фирмы Бреге пользовались в свое время большой известностью и, вероятно, Яблочков слышал об этой фирме и во время военной службы и во время службы на железкой дороге и, быть может, вследствие этого он по приезде в Париж и обратился с предложением своего электромагнита именно к этой фирме.

Тогдашнего владельца фирмы Луи Бреге его электромагнит не заинтересовал, но увидев из разговоров с Яблочковым, с кем он имеет дело, Бреге предложил Павлу Николаевичу поступить на работу в свою мастерскую. Для Яблочкова тип ученого — промышленника-конструктора, какой представлял Бреге, был очень близок, и Яблочков принял предложение и поступил к Бреге на службу с вознаграждением по 400 франков в месяц. Это дало возможность Павлу Николаевичу обосноваться в Париже. Работая у Бреге, Яблочков устроит одновременно у себя в номере маленькую лабораторию, в которую, к ужасу хозяина гостиницы, провел с помощью резиновой трубки от газового рожка в коридоре газ, и в ней продолжал спою изобретательскую работу. Он начал с того, что взял французский патент на свой электромагнит. Это был первый патент, полученный Павлом Николаевичем. Выдан он был французским правительством «лейтенанту русских инженерных войск Яблочкову на электромагнит системы Репмана, доктора медицины в Москве», за № 110479 от 29 ноября 1875 г. Почему электромагнит в патенте был назван электромагнитом системы Репмана в Москве, совершенно непонятно, так как по всем имеющимся сведениям он был придуман Яблочковым. Можно только догадываться, что доктор медицины Репман помогал, быть может, денежно опытам Яблочкова над электромагнитом. Вероятно, это был один из членов семьи Репман, один из которой Альберт Христианович Репман был еще в 1901 г., во время Второго всероссийского электротехнического съезда, директором отдела прикладной физики при Политехническом музее в Москве и демонстрировал в музее членам съезда ряд электрических приборов и поставленных им опытов. Другой член этой же семьи, Бюксенмейстер, был организатором первого русского электротехнического завода в Кинешме, изготовлявшего электротехнические угли (для дуговых ламп, элементов и т. п.) для всего Поволжья и, быть может, и для всей России и поставившего даже у себя на заводе производство электрических ламп накаливания. Весьма вероятно, что кто-нибудь из Репманов сотрудничал с Яблочковым. Отличительной особенностью электромагнита Яблочкова было то, что обмотка его была образована из плоской ленты, намотанной «на ребро», т. е. так, что плоскость ленты была перпендикулярна к сердечнику. Пункты патента, на которых особенно настаивал Яблочков, были именно ленточная форма проводников обмотки и перпендикулярное расположение плоскости лент по отношению к поверхности сердечника. Интересно заметить, что в описании электромагнита говорится, что ленты для обмотки могли быть медные или свинцовые, или из других металлов. Трудно теперь догадаться, в чем видел Яблочков достоинство своей обмотки и почему наряду с медью он поставил свинец, имел ли он в виду лучшее охлаждение или что другое, но при состоянии в его времена знаний в области электромагнетизма можно думать, что у него и были какие-нибудь основания. О том, как понимались тогда имевшиеся сведения по электромагнетизму и, особенно, по магнитным свойствам материалов, можно видеть хотя бы из того, что во втором своем патенте на электромагнит (французский патент № 111535 от 17 февраля 1876 г.) Яблочков, упоминая по-прежнему о применении ленточной обмотки, говорит: «вместо мягкого железа для сердечника электромагнита можно применять чугун, который в некоторых случаях даже имеет преимущество вследствие его остаточного магнетизма». По-видимому, его электромагниты не получили применения, и в дальнейшем Яблочков к своим магнитам уже не возвращался.

Работая у Бреге, Яблочков не прекращал интересоваться электрическими лампами и продолжал свои опыты, начатые еще в Москве. Вероятно, Яблочков думал создать нечто подобное друмондову свету, применив в качестве источника тепла для накаливания светящегося тела вместо водородно-кислородного пламени вольтову дугу, так как он работал над нагревом разного сорта глин, извести и т. п. дугой. Впоследствии идея эта была осуществлена в лампе «Солнце».

«Делая опыты в России над глинами, известью и т. п., — говорил Яблочков в одном из своих выступлений, — я употреблял небольшое количество элементов (гальванических) и обширных наблюдений, поэтому, производить не мог. Работая же в Париже у Брегета, мне пришлось иметь дело с большими электрическими машинами; здесь-то я и исследовал свойства этих глин».

Далее Яблочков говорит: «Если помещать в вольтову дугу кусочки глины, извести и других земель, то они накаливаются. Затем часть их плавится. Эта расплавленная часть представляет возможность токам большого напряжения проходить по ней; тогда она раскаливается уже до ярко белого каления, издает свет и постепенно улетучивается. Если количество тока велико, сравнительно с его напряжением [14], то по этой раскаленной части проходит лишь ничтожное его количество, глина, главным образом, испаряется в жару вольтовой дуги и испаряющиеся частицы дают уже настоящее пламя, причем от различных сортов земель зависит и большая или меньшая окраска пламени в тот или другой цвет».

Сначала Яблочков думал помещать изучавшиеся им огнеупорные материалы в вольтову дугу и поддерживать при их помощи расстояние между угольными электродами дуги. «Но затем, — говорит он — я придумал приспособление, которое известно под именем моей свечи».

Существовавшие в его время типы дуговых электрических ламп — регуляторов были хорошо известны Яблочкову и, конечно, не удовлетворяли его.

«Систем регуляторов— пишет Яблочков, — чрезвычайно много, но все они могут быть подведены под два типа — регуляторы, действующие посредством груза и действующие посредством пружин. Лучшими представителями обоих типов следует признать действующий посредством груза регулятор Серрена и пружинный регулятор Фуко. Устройство этих регуляторов было описано много раз и поэтому останавливаться на нем я не буду, а сделаю лишь беглый обзор их сравнительных достоинств и недостатков. Регулятор Серрена дает свет более ровный, чем регулятор Фуко, если прибор находится в вертикальном и в совершенно свободном положении. При значительном наклонении он действовать совсем не может, а также не переносит и тряски.

Регулятор Фуко может действовать в наклонном положении, более способен переносить тряску, но его устройство очень сложно, регулировка производится помощью трех пружин и свет, даваемый им, довольно сильно мерцает.

Вообще в регуляторах при всяком изменении тока надо менять и самую регулировку, и можно сказать, что если нужно получить ровный свет, то механик не должен отлучаться от аппарата. Их механизм более или менее сложен и требует довольно частой чистки и ремонта. Указанные недостатки значительно затрудняют введение электрического освещения в практику».

Яблочков и поставил себе задачей придумать такую конструкцию дуговой электрической лампы, которая не страдала бы недостатками регуляторов.

Регулятор должен был выполнять следующие функции: 1) при зажигании лампы разводить угольные электроды на вполне определенное расстояние; 2) во время горения лампы поддерживать длину дуги постоянной, сближая угли по мере их сгорания, и 3) сводить угли до соприкосновения при прекращении тока через лампу для того, чтобы дуга могла образоваться при новом включении лампы. Сложность таких функций и требовала применения в регуляторах механических и электрических частей, например часовых механизмов, электромагнитов, механических сцеплений и т. п., обусловливавших и сложность их устройства и трудность их эксплоатации. Яблочков пытался поддерживать расстояние между вертикально расположенными углями, помещая между ними кусочки огнеупорных материалов, но из этого ничего не вышло.

«При расположении углей, как это практиковалось прежде, — пишет Яблочков, — один против другого, помещение кусочка глины, удерживающее между ними расстояние, было невозможно. Нужно было их поместить так, чтобы улетучивающееся землистое вещество уничтожалось по мере сгорания углей. Таким построением, очевидно, являлось бы помещение углей один около другого с землистым веществом между ними. Оно и дало горелку для электрического освещения, известную под именем свечи моей системы». Свеча Яблочкова, действительно, отличается исключительной простотой. В ней нет решительно никаких механизмов. Это просто два угольных стержня, разделенных прослойкой какого-нибудь огнеупорного изолирующего материала, например каолина, гипса и т. п., испаряющегося под действием вольтовой дуги (фиг. 3). Угли присоединяются к зажимам источника тока, и между ними образуется дуга.

Для зажигания дуги Яблочков сначала предлагал употреблять «угольную палочку, которую держат в руке помощью изолирующей рукоятки и прикладывают к обеим оконечностям угольков в то время, когда начинается пропускание электрического тока. Таким образом, цепь замыкается, происходит раскаливание углей и затем угольная палочка отнимается» (Русская привилегия, № 5 от 6 апреля 1878 г.). Затем для этой же цели на конце «свечи» между углями Яблочков помещал тонкий угольный мостик-зажигатель, который при проходе тока сгорает и вызывает образование между угольными электродами вольтовой дуги. «В этой свече, — пишет Яблочков, — при сгорании углей вольтова дуга накаливает и испаряет изолировку; накаленные земли представляют некоторую проводимость для токов и потому вольтова дуга не перемещается так сильно на оконечности углей, как это бывает при регуляторах, а держится на тех точках, около которых находится накаленная часть изолировки, вследствие чего свет становится несравненно ровнее; от свойств тела, употребляемого для изолировки, зависит некоторая окраска пламени, что может быть утилизировано сообразно назначению освещения. Итак, узкая полоска землистого вещества выполняет задачу держания углей на неизменном расстоянии гораздо лучше, чем сложный прибор, регулятор, достигающий этого лишь приблизительно. Полоска держит их абсолютно, кроме того, она придает известные качества свету, которые не мыслимы при регуляторе. Горелка такого устройства сделалась совершенно доступной для употребления; она не боится ни передвижения, ни тряски, не требует за собой никакого ухода и представляет возможность вводить электрическое освещение там, где со сколько-нибудь сложным аппаратом оно было бы немыслимо».

Таким образом, Яблочковым была решена задача, над которой много лет трудился целый ряд изобретателей: задача сооружения практически удобной дуговой электрической лампы.

Сохранилось много преданий об обстоятельствах изобретения этой лампы. Так, сверстник Яблочкова Перский в своих воспоминаниях, доложенных на Первом всероссийском электротехническом съезде, говорит: «В январе или феврале 1876 г., сидя за столом одного из Парижских кафе, Яблочков положил на стол два карандаша параллельно друг другу и у него вдруг блеснула мысль, если заменить эти карандаши углями и произвести между ними вольтову дугу, то длина ее останется постоянною без посредства какого бы то ни было механизма».

Жена Павла Николаевича, М. Н. Яблочкова, пишет: «Павел Николаевич заболел лихорадкою. Но несмотря на болезнь, он продолжал работать в своей комнате над своей свечей, еще находившейся в зачаточном состоянии, и вот, как он рассказывает, выйдя погулять, на углу Бульвара Сен-Мишель и улицы Соммерар, где он жил, он остановился и даже крикнул: «нашел»! Это была окончательная идея свечи. На другой же день он взял привилегию и пошел сообщить об этом Ниоде и Бреге».

Несомненно, такие эпизоды могли иметь место, но все имеющиеся сведения позволяют утверждать, что свеча не выскочила внезапно готовой из головы Яблочкова, как мифологическая Афина-Паллада из головы Зевса, но явилась плодом длительных трудов и долгих исканий. Не сразу свеча получила и ту форму, в которой она, можно сказать, завоевала мир. В своей первой привилегии (французской от 23 марта 1876 г.) Яблочков описывает свое изобретение так:

«Это изобретение состоит в полном уничтожении всякого механизма, обычно применяемого в существующих электрических лампах. Вместо того, чтобы осуществлять механически автоматическое сближение проводящих углей по мере их сгорания, я просто укрепляю эти угли один рядом с другим, как это показано на фигуре, разделяя их изолирующим веществом, способным сгорать одновременно с углями, например, каолином. Приготовленная таким образом пара углей может быть помещена в нечто вроде специального подсвечника (фиг. 3), и затем достаточно пропустить через них ток от батареи или какого-нибудь другого источника для того, чтобы образовалась между концами углей вольтова дуга. В случае тока одного направления, вследствие того, что один из углей расходуется быстрее, чем другой, следует применять угли разного сечения, дабы поддержать постоянным равенство их длин. Вместо этих двух угольных палочек, укрепленных на двух сторонах каолиновой прослойки, я могу применять каолиновую трубочку, внутри которой помещен угольный цилиндр, окруженный угольной трубкой.

Для зажигания, или приведения в действие лампы, я снабжаю два свободных конца углей соединением, которое при проходе тока сначала краснеет, а потом сгорает и служит для возникновения дуги.

Если мне нужно поддерживать светящуюся точку на постоянной высоте в рефлекторе, я применяю часовой механизм с электрическим механизмом, приводимым в действие ответвленным током, или без такого механизма, если он не необходим.

Вместо обычных углей я могу применять угольные аггломераты, что особенно удобно для конструкции из трубок, о которой сказано выше.

На приложенном рисунке изображен случай, когда оба угля расположены параллельно, но я сохраняю за собой право в некоторых случаях давать одному относительно другого наклон».

К этой французской привилегии приложен рисунок (фиг. 4), изображающий свечу в продольном и поперечном сечениях. Четыре описанных в патенте типа свечей предназначены все для питания постоянным током, так как сечения электродов во всех типах различны. На фиг. 5а дан снимок двух оригинальных свечей Яблочкова, вставленных в специальный подсвечник Яблочкова, хранящихся в Электротехническом музее Ленинградского политехнического института.

На фиг. 5б изображен тот же подсвечник со свечей, вставленный в фонарь с матовым шаром для уличного освещения.

В русской привилегии (апрель 1878 г.) указано также несколько типов свечей с углями в виде стержня, помещенного по оси пустотелого угольного цилиндра, или двух стержней, помещенных параллельно один другому. В этой привилегии говорится: «Угольные палочки помещаются параллельно в цилиндрический патрон (из бумаги или из амиантового (азбестового) картона), а промежуток наполняется порошкообразной (изолирующей) смесью. Когда патрон наполнен смесью до краев, его замазывают раствором кремнекислого кали». Рисунки такой лампы и углей и приведены в привилегии (фиг. 6).

В связи с применением бумажного или асбестового внешнего патрона в привилегии сказано, что «угольки разделяются между собой изолирующим телом, могущим сгорать или улетучиваться с углями. Изолирующими телами могут служить каолин, стекло, цементы, лаки и пр. Для изолирования предпочтительно брать не твердые, а сыпучие тела, в виде более или менее сыпучего порошка, составленного из земель, кремнеземных соединений и вообще всех тел наиболее тугоплавких… Одна из смесей, употребляемых с успехом, составляется из одной части извести, четырех песка и двух частей талька. Эти вещества тщательно смешиваются… При примешивании к изолирующему телу графита в порошке получается пламя значительного блеска. Сгорание изолирующего тела позволяет, кроме того, изменять и окраску получаемого света; для этого к порошку примешивается небольшое количество металлических солей, употребляемых в пиротехнике. Соли натрия окрашивают пламя в желтый цвет и тем, в особенности, способствуют изменению синих и фиолетовых лучей, находящихся в избытке в электрическом свете».

И в русской привилегии изображены угли различного сечения, т. е. лампа предназначалась для питания постоянным током.

За первой французской привилегией (от 23 марта 1876 г.) последовал в период с сентября 1876 г. до марта 1879 г. ряд добавочных, французских же, привилегий, касающихся отдельных усовершенствований в устройстве свечи.

В первой из добавочных французских привилегий (16 сентября 1876 г.) Яблочков касается, главным образом, так же, как и в русской привилегии, состава изолирующей массы, применяемой для разделения в его свече угольных электродов.

«Лампа моей системы, — пишет Яблочков, — основана на принципе образования вольтовой дуги между двумя углями без помощи какого бы то ни было механического приспособления для сближения углей, так как эти угли просто-напросто отделяются и удерживаются на подходящем друг от друга расстоянии прокладкой из изолирующего плавкого вещества…

Оно может быть и не каолином, например, можно применять всякого рода остекловывающиеся материалы, в состав которых можно вводить металлические окислы, дающие возможность давать свету различные окраски.

Эти окислы можно вводить также в состав углей, если применять угольные аггломераты, вместо ретортных углей.

Известно из опытов разложения призмой электрического света, что в спектре разложения находится широкая фиолетовая полоса. Так как фиолетовые лучи утомляют зрение, то я могу вводить в состав изолирующего материала вещества, могущие давать желтые лучи. Эти последние, смешиваясь с фиолетовыми, могут давать белый свет.

Само собой разумеется, что мои лампы могут иметь различные размеры в зависимости от силы света, которую от них надо получить, и что можно до бесконечности менять относительное расположение углей и изолирующего материала».

Эта привилегия Яблочкова интересна в том отношении, что она устанавливает за Павлом Николаевичем приоритет в применении окислов металлов для изменения окраски света дуги, не только посредством включения окиси в состав изолирующей прокладки между углями, но и в состав самих углей, т. е. в том применении окислов, которое много лет спустя стало предметом привилегий для целого ряда ламп «интенсивного света», ламп для туманов и вообще ламп с «пропитанными углями».

К вопросу о примесях разного рода к основному материалу, служащему для изолирования одного электрода от другого, Яблочков возвращается и во второй, третьей, четвертой и шестой дополнительных французских привилегиях (2 октября 1876 г., 23 октября 1876 г., 21 ноября 1876 г. и 11 марта 1879 г.). В этих привилегиях он дает некоторые новые конструкции свечи и пытается решить вопросы об автоматическом зажигании потухшей свечи, а также важнейший вопрос — вопрос о дроблении электрического света. Под термином «дробление света» понимали тогда питание от одного общего источника тока ряда источников света разной силы.

Во второй дополнительной французской привилегии (от 2 октября 1876 г.) Яблочков указывает на то, что если в качестве изолирующего слоя вместо сильно огнеупорных масс применять смеси, которые, расплавляясь, образуют между угольными стержнями жидкую каплю сиропообразной конституции, то вольтова дуга между углями образуется, главным образом, в местах, где капля соприкасается с углями. Если перемещается капля, то перемещается и дуга. При применении таких изолирующих смесей, по наблюдениям Яблочкова, длина вольтовой дуги может достигать нескольких сантиметров при таких напряжениях, при которых в обычном воздухе дуга могла бы быть лишь в несколько миллиметров. Следствием этой легкости прохождения тока, создаваемой наличием между углями жидкой капельки, является не что иное, как дробление электрического света на источники света, дающие свет, равный весьма малому числу газовых рожков. «Именно этот экспериментальный факт, вытекающий из практики применения моей системы, я и выставляю как главный предмет настоящей дополнительной привилегии. При помещении в цепь нескольких подсвечников с электрическими свечами моей системы и изменяя толщину углей и толщину изолирующей прослойки, получают следующие результаты: ток от одной машины, дающий свет в сто рожков, достаточен для создания вольтовой дуги уже не между парой углей одной свечи, но между углями нескольких свечей. Таким образом, проблема питания нескольких источников света, сравнительно небольшой интенсивности, от одного источника электрической силы (батареи или магнитоэлектрической машины) решается простым расположением и составом моей свечи».

Здесь Яблочков в первый раз говорит о проблеме, которая исключительно сильно интересовала всех электротехников его эпохи, получившей название проблемы дробления света. Эта проблема состояла из двух частей: 1-я — создание источников различной, в том числе, сравнительно малой, силы света и 2-я — нахождение способа питания ряда источников света от одного общего источника тока, так чтобы каждый источник света мог действовать независимо от других.

Способ питания газовых ламп разных сил света от общего газового завода через посредство магистральных труб был тем способом, аналогичного которому искали изобретатели для электрических ламп. Аналогию между предлагаемыми ими способами питания электрических ламп и способами питания газовых ламп выдвигали все изобретатели-электрики того времени, включая Эдисона, как доказательство достоинств своих систем.

Какое значение придавалось проблеме деления света, видно по тому ряду предложений, которые делались для решения этой проблемы. Из них некоторые были очень оригинальны. Например, В. Н. Чиколев предложил и осуществил в Петербурге на Охтенском пороховом заводе систему дробления света, получавшегося от мощной дуговой лампы посредством зеркал, отражавших этот свет в различных направлениях для освещения различных помещений и рабочих мест. Яблочков тоже придавал проблеме дробления света большое значение и возвращался к ней несколько раз, изобретая методы питания ряда ламп от общего источника и предлагая изготовлять свечи на разные силы света.

Слова Яблочкова: «Следствием легкости прохождения тока между двумя углями (разделенными слоем каолина и т. п.) является не что иное, как дробление электрического света на части, дающие свет, равный весьма небольшому числу газовых рожков» и далее: «Ток от одной машины достаточен для создания вольтовых дуг уже не между двумя углями одной свечи, но между углями нескольких свечей» показывают ясно, какой смысл придавал Яблочков термину «дробление света».

В своей дополнительной привилегии Яблочков говорит и об автоматическом зажигании своих свечей.

«Если в изолирующий материал я введу вещества, которые, сгорая, превращаются из непроводящих в проводящие, то можно добиться автоматического зажигания свечи. Например, я примешиваю в изоляцию органическое вещество, которое, сгорая, дает уголь в порошкообразном виде. Этот уголь образует порошкообразный след на расплавленной капельке между углями. Если ток по какой-нибудь причине будет прерван и затем вновь пропущен, то этот поверхностный слой воспламеняется, вызывает горение угольных палочек и лампа зажигается автоматически».

В этой же дополнительной привилегии Яблочков предлагает применять для обеспечения надежности горения ряда свечей, соединенных последовательно, присоединение к зажимам каждого «вторичного элемента». Это была мысль, к которой Яблочков вернулся впоследствии и которая, независимо от Яблочкова, разрабатывалась проф. Авенариусом.

Наблюдая при эксплоатации своей свечи ряд недостатков, а также, вероятно, стремясь защитить свои привилегии от обхода, Яблочков взял еще несколько дополнительных привилегий на изменение конструкции своей свечи, в которых применял асбестовые оболочки, порошкообразные вещества, различные примеси в состав изолирующей массы и т. п.

В дальнейшем Яблочков предлагал применять пустотелые угли, вводя в них металлические полоски. Согласно его сообщению в заседании Русского технического общества в 1880 г. это усовершенствование одновременно значительно ослабляет звук, производимый горящей свечей. Пустотелые угли с металлической проволокой, помещенной вдоль оси углей, в центральном канале, были предложены как новое изобретение гораздо позже в Германии.

Много и упорно работал Яблочков над усовершенствованием своей свечи. К этому побуждало его, между прочим, и то обстоятельство, что появление свечи вызвало целый ряд изобретений, имевших целью усовершенствовать свечу Яблочкова и сделать ее еще более удобной в применении. Некоторые из этих изобретений получили даже некоторое распространение, как, например, предложенная французским физиком Жаменом «свеча Жамена». Другие остались без всякого применения. Появление этих изобретений продолжалось довольно долго. Например, уже в 1882 г. в России была выдана привилегия Меритансу на «электрическую горелку», отличающуюся от свечи Яблочкова тем, что в «горелке» применяется не два угля, помещенных параллельно, а целый пучок также параллельно поставленных угольных стержней, число которых в пучке может быть 4, 5, 6 и больше. Привилегия на свечу без механизма была выдана русскому изобретателю Тихомирову, в конструкции которого один уголь обвивался спиралью вокруг центрального стержня. Еще позже в 1888 г. была выдана русская привилегия капитану Игнатьеву на электрическую свечу, представлявшую «новое видоизменение на свечу Яблочкова, на которую выдана была привилегия в апреле 1878 г». Эта «видоизмененная свеча» очень мало отличается от свечи Яблочкова, перед которой, по словам изобретателя, имела то преимущество, что она горит при постоянном токе и может быть обращена дугой вверх и вниз. Из описания свечи Игнатьева видно, что свеча его по конструкции весьма напоминает некоторые конструкции Яблочкова, не нашедшие применения. Не нашла применения и свеча Игнатьева.

Сам Яблочков, как было сказано, уделил очень много внимания вопросу о составе изолирующего слоя между углями свечи. Изучение разного рода тугоплавких изолирующих материалов привело его, между прочим, к изобретению совершенно нового типа лампы, принадлежащей к типу ламп накаливания, т. е. ламп, в которых источником света служат уже не вольтова дуга и ее электроды, а накаливаемое током особое тугоплавкое тело. Повидимому, мысль использовать тугоплавкие неметаллические тела, в холодном состоянии не проводящие, для устройства электрических ламп появлялась и раньше. Например, имеются сведения, что уже в 1845 г. некий Борщевский в Петербурге изобрел лампу накаливания, в которой калильным телом служил плавиковый шпат. Вот как описывает свою лампу изобретатель в заявлении о выдаче привилегии (Свидетельство Департамента Мануфактуры от 19 июля 1845 г. № 3428):

«Аппарат гальванического освещения, мною усовершенствованный, состоит, для комнатного освещения, из вазы, заключающей в себе батарею от 4 до 12 банок Грове, над коей возвышается стеклянный шар с пропущенными в оный от батареи проводниками. В концах проводников утверждаются острые кусочки известной породы плавикового шпата, находимого в Сибирских гранитных горах, как значится в приложенном рисунке, изображающем комнатную гальваническую лампу. Замена угля плавиковым шпатом имеет важные преимущества тем, что требует менее тока и что шпат посредством раскаления, передавая сильный свет, остается всегда неизменным в массе, следовательно, однажды, устроенное расстояние между проводниками остается всегда неизменным и не требует особого снаряда для сближения, как при углях, что неудобно и хлопотливо».

Лампа Борщевского демонстрировалась в зале Вольного Экономического Общества в Петербурге. Питаемая от семи элементов Грове, она совершенно затмила, по сведениям, сообщенным внуком изобретателя, свет 50 масляных ламп, пламя от которых было настолько менее ярко, что давало при электрическом свете на стенах тени. Никаких дальнейших сведений о лампе Борщевского с плавиковым шпатом не сохранилось.

В предложенной Яблочковым лампе калильным телом служила пластинка из тугоплавкого изолирующего вещества. Из своих опытов над материалами для образования изолирующего слоя между углями в его свече Яблочков нашел, что каолин, смеси окислов и ряд других тугоплавких тел, являющихся непроводниками при обычных температурах, становятся проводящими при достаточно высоких температурах.

«Продолжая мои исследования, — пишет Яблочков в своей французской привилегии от 17 апреля 1877 г., — над явлениями, происходящими при помещении посторонних тел на пути электрических искр всякого рода, я пришел к открытию общего закона, частными случаями которого будут явления, послужившие предметом привилегии на каолиновую лампу.

До сей поры, откуда получался электрический свет, производимый всеми известными способами? Либо накаливанием до бела самих проводников, как-то: тонкая полоска угля или платины, либо, как в регуляторах, от блеска накаленных частиц, отрываемых от одного из проводников и переносимых на другой, но всегда являющихся частью этих проводников.

У меня вольтова дуга или, лучше сказать, электрическая искра какого бы то ни было рода, играет только вспомогательную роль. Главным источником света является или быстрое сгорание, или медленное горение при накаливании посторонних тугоплавких тел, которые я помещаю между проводниками и на которые ток действует при прохождении от одного проводника к другому. Действительно, если пластину из тугоплавкого вещества, как, например, каолин, поместить между двумя угольными или металлическими проводниками, то на нее ток будет действовать двояко, в зависимости от того, будет ли ток иметь большую силу или большое напряжение, но конечным результатом всегда будет появление света, происходящего вследствие физического влияния тока на каолин.

В случае сильного тока каолин плавится и испаряется с такой же скоростью, как сгорают угольные проводники, и оба световые эффекта складываются, как в свече. В случае большого напряжения тока проскакивание искр через пластинку каолина вызывает следующее физическое явление: тело становится проводящим всюду, где на него действовала искра, и через несколько секунд ток начинает свободно проходить по телу, по которому раньше он пройти не мог. Искра как бы пробивает току путь, делая проводящими точки тела, которых она касается. На пути тока вещество между проводниками накаляется, испуская яркий, ровный и спокойный свет… Одним словом, ток может проходить по телам, считавшимся до сих пор изолирующими, которые одновременно накаливаются и становятся проводящими…

Это действие искры высокого напряжения на тугоплавкое тело, помещенное на ее пути, имеет совершенно общий характер и относится ко всем известным доныне искрам, получаемым или от гальванических элементов (сухих или мокрых), или от магнитоэлектрических и динамоэлектрических машин, или от индукционных катушек, или от электростатических машин, или даже от естественных источников электричества [15].

Резюмируя, я предлагаю устройство электрической свечи из двух металлических стержней, между которыми помещена пластинка из тугоплавкого тела, например, магнезии, циркона, мела и т. п., накаливаемая индукционной искрой».

Лампа, построенная Яблочковым на этом принципе и именуемая им также «электрической свечей», хотя она коренным образом отличается от его первой свечи с вольтовой дугой, состояла из двух металлических пружинок, присоединенных к зажимам источника тока, между которыми была помещена каолиновая пластинка.

«Источником света в моей лампе, — говорит Яблочков, — служит каолиновая пластинка, которой придают различные размеры, в зависимости от желаемой силы света. Пластинка может быть помещена в стеклянный шар и снабжена рефлектором для получения желаемого распределения света».

На фиг. 7 дано несколько форм каолиновых калильных тел, предложенных для ламп Яблочкова.

«Каолиновая лампа» Яблочкова встречена была с большим интересом. О ней делались многочисленные сообщения, в частности, в Парижской академии наук. Есть некоторые сведения, что она испытывалась в Кронштадте для нужд флота. Однако, практического применения она не получила и была основательно забыта. О каолиновой лампе Яблочкова вспомнили много лет спустя, когда была изобретена лампа Нернста, основанная на том же принципе, но отличавшаяся по конструкции, тщательно разработанной и приспособленной для обычного употребления, Именно по форме она была подобна обычной лампе накаливания, снабжена эдисоновским цоколем и т. д. В стеклянных колбах первых ламп Нернста были сделаны отверстия, так что тугоплавкие стерженьки для придания им электропроводимости подогревались простой спичкой (зажигались спичкой). В последующих типах этих ламп предварительный нагрев стерженька делался посредством электрического нагревателя, и для предохранения стерженька от перегорания при повышении напряжения у зажимов лампы в каждую лампу помещался предохранитель из железной проволоки в стеклянном сосудике, наполненном водородом{3}. В таком виде лампа была, конечно, гораздо удобнее для употребления, чем примитивная «каолиновая лампа» Яблочкова, но несмотря на шумный начальный успех, она была скоро вытеснена другими, более простыми и более экономичными лампами.

Сходство ламп Нернста с лампами Яблочкова было настолько очевидно, что во многих странах Нернсту было отказано в выдаче привилегии на том основании, что предлагаемые им лампы были ранее изобретены Яблочковым.

Одной из причин неуспеха «каолиновой лампы» Яблочкова могла быть и та, что сам Яблочков, увлеченный успехом своей свечи, обратил все свое внимание на усовершенствование этой свечи и не возвращался уже в дальнейшем к каолиновой лампе. Впрочем и все видоизменения свечи, предлагавшиеся Яблочковым и его последователями, имели мало значения. Наибольшее распространение получила и мировую славу изобретателю дала самая простая конструкция свечи: две параллельные угольные палочки, разделенные слоем изолирующей массы. Слава эта пришла очень быстро. Уже летом 1876 г., т. е. меньше чем через год после приезда в Париж, Яблочков направляется в Лондон в качестве представителя фирмы Бреге на Лондонскую всемирную выставку физических приборов и на этой выставке впервые публично демонстрирует свою свечу в самом первоначальном виде: два вертикальных угольных стерженька, из которых один окружен фарфоровой трубкой. Свеча возбудила громадный интерес к себе. О ней заговорили и в технической и в общей прессе всего мира. Проф. А. Д. Лачинов, один из русских пионеров электротехники, писал: «Свеча Яблочкова фигурировала на Лондонской выставке и приводила в восторг англичан, сумевших оценить по достоинству всю оригинальность этого изобретения».

К сожалению, «оригинальность» и вообще достоинства изобретения Яблочкова оценили иностранцы, а не его соотечественники. Даже передовые люди в России не имели достаточно широких взглядов, чтобы, если не понять, то почувствовать, значение изобретения Яблочкова. Вот, что, например, записывает в своем дневнике один из русских ученых экономистов, впоследствии академик, находившийся в Лондоне в ученой командировке в то же время, когда там находился Яблочков и когда о его изобретении «кричали», по выражению будущего академика, лондонские газеты.

«В двух шагах от меня проживает в одном пансионе целая русская колония, в которой есть даже две дамы и одно семейство с детьми. Эти две дамы (обе молодые и одна почти красавица) — жены двух довольно интересных субъектов. Первый самоучка-механик, бывший телеграфист, некто Яблочков, изобрел удивительную вещь: электрическую свечу, которая должна заменить всякие фонари и лампы для освещения улиц и больших зданий. Он продал свою выдумку в Париже какой-то компании за значительный куш денег и сверх того постоянное жалование в 2000 франков в месяц. Сюда в Лондон он приехал по поручению Компании распространять свое изобретение и делать опыты в разных местах и о нем уже кричат местные газеты».

В другом месте того же дневника записано: «в том же доме, где живет профессор Усов, живет и некто Яблочков, техник-изобретатель электрической свечи. Его находку пробуют в настоящее время в Вест-индских доках и на мосту Ватерлоо в Кенсингтонском и Британском музеях. С ним молодая жена…». Вот все, что нашел сказать об изобретении своего соотечественника «интересного субъекта» и его «выдумке» русский ученый-экономист. Его больше заинтересовал куш, полученный русским изобретателем, об изобретении которого, по его словам, «кричали местные газеты».

Русский экономист и не подозревал, началом какого экономического сдвига является изобретение его соотечественника. Впрочем, в ту эпоху это была судьба всех русских изобретателей и их изобретений: интересовать французов, американцев, англичан, но только не русских.

На Лондонской выставке Яблочков познакомился со знаменитым английским физиком Варрен-Деларю, который высоко оценил изобретение Яблочкова и предоставил ему для демонстрации свою лабораторию. В дальнейшем Яблочков при всех поездках в Лондон пользовался гостеприимством Варрена-Деларю, работал в его лаборатории и там же производил свои демонстрации. Общение с таким крупным физиком, несомненно, не прошло бесследно для молодого изобретателя.

В Россию первые сведения о появлении свечи Яблочкова дошли весьма скоро. Они были привезены в Петербург профессором Санкт-Петербургского университета, Федором Фомичем Петрушевским, посетившим Лондонскую выставку физических приборов и имевшим случай видеть на выставке свечу в действии.

В протоколе № 39 Русского физико-химического общества от 5 октября 1876 г. записано: «проф. Ф. Ф. Петрушевский рассказал также устройство электрической горелки Яблочкова, весьма простой и дешевой». Русские физики отнеслись к изобретению Яблочкова с большим вниманием и через 4 месяца, 1 марта 1877 г., Петрушевский вновь делал сообщение о свечах Яблочкова, демонстрировал 4 свечи и прочитал следующую выдержку из письма, полученного им от Яблочкова:

«посылаю Вам 4 свечи для работы с машиной Аллианс [16], одну с углями в 8 миллиметров в диаметре, вторую в 7 миллиметров и две в 6 миллиметров. Последние можно поставить обе сразу, если машина имеет достаточное напряжение. Делая свечи малого диаметра и ставя машину всю в напряжение [17], я жгу по 6 свечей. Для всех моих опытов я предпочитаю машину с переменным током. В машинах этой системы при особых приспособлениях я имею возможность получить практически до восьмидесяти (80) светящихся точек от одной машины. Основанием этого разделения служит найденное мною свойство глины и вообще земель при высокой температуре делаться проводниками тока, который, проходя, раскаливает их до бела и производит яркий ровный свет с пламенем или без пламени по желанию. Теперь опыты совсем закончены».

7 февраля 1877 г. в заседании того же Общества проф. Петрушевский сообщил о произведенных им совместно с А. С. Степановым фотометрических исследованиях свечей Яблочкова как с фарфоровым, так и с гипсовым изолирующим слоем. Одновременно производились измерения над дуговой лампой с ручным регулятором.

Обстановка опытов, повидимому, была очень примитивна. Фотометром служил простой бунзеновский фотометр с бумажным экраном. Световым эталоном была обычная «четвериковая» [18] стеариновая свеча. Переменного тока в распоряжении экспериментаторов не было и потому был использован ток постоянный, направление которого в свече периодически менялось ручным коммутатором. Повидимому, в распоряжении экспериментаторов не было и электроизмерительных приборов, так как сила тока не измерялась, а о напряжении, даваемом примененной машиной постоянного тока, судили по числу оборотов якоря машины. Тем не менее некоторые результаты были получены: исследователи пришли к выводу, что свеча с каолиновой (фарфоровой) изоляцией дает силу света около 400 свечей и горит плавно. Свеча с гипсовой изоляцией дает большую силу света, но мерцает сильнее, чем каолиновая. Свеча с каолином дает свет более белого цвета, чем свеча с гипсом. Испытываемые свечи горели по 1 часу, но смотря по остатку, могли бы еще прогореть около получаса. Сообщенные проф. Петрушевским сведения были, по-видимому, первыми результатами, полученными в России, сколько-нибудь характеризовавшими количественно свечи Яблочкова. По-видимому, и за границей таких данных было тогда (в начале 1887 г.) или очень мало, или совсем не было.

В том же Русском физико-химическом обществе 13 декабря 1877 г. проф. Н. Г. Егоров, лично хорошо знавший П. Н. Яблочкова и хорошо знакомый с его работой, сделал обстоятельное сообщение об изобретениях Яблочкова по следующей программе: 1) об электрической свече; 2) о каолиновых пластинках, накаливаемых индукционной катушкой; 3) о больших конденсаторах, вводимых в цепь машины (Аллианс) для увеличения числа свечей, и 4) о новом элементе, состоящем из натровой селитры, расплавленной в чугунном сосуде, и кусочка угля.

Из этой программы видно, что к концу 1877 г. уже были известны и другие изобретения П. Н. Яблочкова кроме свечи, как-то: трансформатор (индукционная катушка), применения катушек и конденсаторов для питания ряда ламп от общего источника, а также способ распределения электрической энергии. Эти изобретения были сделаны по большей части в связи с изобретением свечи, но, конечно, ряд других изобретений был сделан Яблочковым и вне этой связи. Однако, коренными изобретениями Яблочкова являются все же его «свеча» и изобретения, с нею связанные. Успех его свечи на Лондонской выставке поощрил Яблочкова к дальнейшей работе над усовершенствованием свечи. Вот что пишет об этом периоде его работы Мария Николаевна Яблочкова: «Вернувшись из Лондона, Яблочков был очень болен, заболев там лихорадкой, но несмотря на болезнь, он продолжал работать в своей комнате над своей свечой, бывшей, конечно, еще в зачаточном состоянии… Яблочков познакомился с инженером Денейруз… и вот этот человек, большой делец, взялся устроить учено-коммерческое общество. Нашел капитал и образовал общество «Societe de la Lumie Electrique, precede Jablochkoff», где Яблочков имел свою небольшую лабораторию. Выстроили большое здание на Авеню Виллиер, пригласили несколько инженеров, несколько рабочих и началась фабрикация свечей. Каждый день приходилось делать демонстрации, и весь Париж был заинтересован изобретением Яблочкова, говорили: «La lumiere nous vient du Nord» («свет приходит к нам с севера»); Электрический свет называли La lumiere russe (русский свет). Французское общество купило у Яблочкова привилегию на свечу во всех странах, хотя Яблочков сначала свое изобретение, свою русскую привилегию, предлагал даром русскому Военному Министерству, но ему на его предложение даже не ответили. Это и заставило его уступить Французскому обществу русскую привилегию.

Когда открылась Всемирная Парижская Выставка 1878 года, свеча Яблочкова была уже закончена для ее практического употребления.

Общество на выставке имело свое помещение — отдельный павильон; свечи Яблочкова привлекали всех посетителей выставки и имя Яблочкова сделалось известным всему миру. Материальные средства его сделались очень хорошими — он получил на миллион акций своего Общества и две тысячи франков в месяц, как инженер Общества.

Свет в Париже был применен для освещения Avenue de l'Opera, в магазинах Printemps и в ряде других мест. Коммерческая сторона мало интересовала Яблочкова, этим занимался Денейруз.

Это Общество уже повело дело в широком масштабе, организовав не только фабрикацию свечей Яблочкова, но и изготовление всех частей и приспособлений, необходимых для устройства осветительных установок, по системе Яблочкова. Свеча Яблочкова получила применение не только в Париже, но и в ряде других мест Франции, а также в других странах. Особенно широкое распространение получила свеча Яблочкова в Англии, где было устроено освещение набережной Темзы, освещение лондонских доков и ряда других мест и зданий — магазинов, театров и т. п.

Первые установки освещения свечами Яблочкова были объектами широкого изучения с разных точек зрения и положили начало тому, что мы теперь называем светотехническими расчетами. Впервые в связи с характеристикой освещения было введено в практическую жизнь понятие «сила освещения», которую мы теперь называем «освещенностью». Для целей расчета освещенности начали исследовать распределение силы света источника по разным направлениям, одновременно начали делать расчеты расхода на освещение механической и электрической энергии в зависимости от выбранных машин и системы питания ламп и т. п. Для рассмотрения этих или им подобных вопросов в разных странах правительственными, общественными и учеными учреждениями организовывались специальные комиссии из наиболее компетентных ученых и инженеров, результаты их работ подвергались всестороннему обсуждению и т. д. Из числа подобных работ особенно интересны работы правительственной комиссии, организованной Английским парламентом в 1879 г. В комиссии участвовали такие авторитеты, как Вильямс Томсон (лорд Кельвин), Тиндаль и др. Комиссия выполнила очень большую работу, имевшую в ту эпоху большое влияние на судьбы электрического освещения. Так, в частности, комиссия занялась одним из основных для практики вопросов, именно вопросом о стоимости электрического освещения. Интересно отметить, каким образом комиссия подошла к решению этого вопроса. Для опытов была использована установка на набережной Темзы. Участок набережной освещался двадцатью фонарями, со свечами Яблочкова (фиг. 8).

Для питания их был установлен электрический генератор, приводимый в движение паровой машиной в 23 л. с. Стоимость энергии за время опыта, длившегося 5,5 час, оказалась равной 1 фунту 9 шиллингам 8,5 пенсам, что составило по 3,24 пенса в час на один фонарь. Так как машинное оборудование стоило 900 фунтов, то при погашении капитала из 5 % и при отчислении на амортизацию 10 % годовой расход на эту цель составлял бы 140 фунтов 10 шиллингов, или при 3600 час. горения фонаря в год по 0,5 пенса на один фонарь в час. Свечей Яблочкова расходуется на 2 пенса в час. Следовательно, общий расход на один фонарь в час будет 3,24+0,5+2, т. е. 5,74 пенса. Сила света каждого фонаря была равна 300–400 свечам при отсутствии в фонаре шара из матового стекла и 150–200 свечам при наличии шара. Этот результат привел к выводу, что в условиях Лондона электрическое освещение дороже газового.

Этот вывод, принятый с удовлетворением собственниками газовых предприятий, подвергся, однако, большой критике со стороны сторонников электрического освещения. Тут в первый раз началась та война между газом и электричеством, которая обострялась впоследствии при появлении каждого крупного усовершенствования в электрических или газовых лампах. Эта война сопровождалась каждый раз крупной биржевой игрой, вызывавшей иногда настоящую биржевую панику.

Сторонники газового освещения пытались указывать на вредное влияние электрического света на глаза, на опасность электричества для жизни пользующихся им, на трудность и даже невозможность дробления света и т. п.

Всеми этими вопросами пришлось заняться Парламентской комиссии. Не обошлось, конечно, и без курьезов. Например, один из членов Парламента допрашивал Тиндаля как физика, как может произойти, что на концах углей, между которыми горит вольтова дуга, возникает температура гораздо выше той, которую дает топливо под котлом. Таких вопросов, кажущихся нам теперь весьма наивными, тогда возникало много.

Работы всех подобных комиссий давали в общем благоприятные для свечи Яблочкова результаты, и число применений свечи быстро возрастало. Параллельно шло совершенствование как самой свечи, так и способов пользования ею.

Большое внимание было обращено на преодоление одного из недостатков свечи, на практике порождавших большие затруднения, именно, на короткий срок горения каждой свечи, вызывавший необходимость частой замены свечи в фонарях, что представляло большие неудобства. Нормально каждая свеча горела 1,75 часа. Покрывая угли в свече тонким слоем меди [19], удалось повысить продолжительность горения свечи до 2 час. Но и этого, конечно, было мало. Яблочков тогда предложил помещать в стеклянный шар каждого фонаря по нескольку свечей (4–6), вставляя их в особый «подсвечник» (см. фиг. 5а и 5б), присоединявшийся к особому коммутатору, причем от коммутатора к каждой свече шел отдельный провод, обратный провод был общим; таким образом для подсвечника в 4 свечи требовалось 5 проводов, для подсвечника в 6 свечей — 7 проводов и т. д. При помощи коммутатора свечи могли зажигаться последовательно одна за другой. Коммутатор управлялся просто рукой. Это, конечно, представляло много неудобств, и поэтому стали придумывать различные приспособления для автоматического включения новых свечей по мере сгорания включенных. Сам Яблочков предложил ряд таких приспособлений, основанных на применении запальных мостиков разного сопротивления или подбора состава, изолирующей массы и т. д. Делались предложения и другими изобретателями. Одно из таких предложений, именно, автоматический подсвечник, сконструированный Бобенрайтом, получило большое распространение.

Из вопросов, требовавших решения, первоначально наибольшее значение имели вопросы, связанные с неодинаковым горением положительного и отрицательного углей, а также связанные с вопросом «дробления света», т. е., главным образом, со способом питания нескольких свечей от общего источника тока. Обоим этим вопросам Яблочков посвятил много внимания, и работа Яблочкова над ними дала много ценных результатов. Первым из них было решение Яблочкова применить для питания свечей переменный ток.

Свои работы над свечей Яблочков начал в эпоху, когда единственным родом тока, получившим сколько-нибудь широкое применение, был ток постоянный, доставлявшийся, главным образом, от гальванических батарей. Поэтому и первые образцы «свечей» были приспособлены для питания постоянным током. В первой привилегии Яблочкова в качестве главного источника тока указана гальваническая батарея и на чертежах «свечи» изображались с углями неравной толщины (см. фиг. 4 и 6), но уже в то время Яблочков предвидел возможность применения для питания свечей переменного тока. Переменный ток был тогда весьма мало изучен. Законы, управляющие явлениями переменного тока, были неизвестны; не существовало для переменного тока и измерительных приборов; поэтому мысль применить переменный ток, притом в широких масштабах, была мыслью очень смелой. Предубеждение против переменного тока существовало даже у электриков и ко времени изобретения свечи и еще долго после ее изобретения. Даже еще в 1888 г. в одной из привилегий на усовершенствованную свечу Яблочкова (привилегия капитана Игнатьева) как на основное достоинство усовершенствования указывалось, что усовершенствованная свеча горит при постоянном токе. Приблизительно в то же время или даже несколько позже против применения переменного тока восставал в Америке сам Эдисон, сравнивая подземные кабели переменного тока высокого напряжения, проложенные по улицам, с помещенными под мостовой динамитными зарядами. Правда, в этом случае неизвестно, кто говорил устами Эдисона: электрик или финансист, владевший главнейшими патентами на применение постоянного тока.


Яблочков не испугался трудностей и смело вступил на путь применения переменного тока. Ему пришлось начать с самого основного вопроса: получения хорошего, подходящего для его целей, генератора переменного тока.

Этот вопрос был решен им совместно с крупнейшим тогда французским электромашиностроительным заводом Грамма блистательно. Был сконструирован генератор, по идее не отличающийся от самых современных генераторов переменного тока: в неподвижной обмотке машины (статоре) индуктировалась электродвижущая сила. Магнитный поток создавал вращающийся многополюсный электромагнит (ротор), питаемый через контактные кольца от особой динамомашины постоянного тока (возбудителя) (фиг. 9).

Интересно отметить, что при сооружении этого генератора экспериментально, при отсутствии всяких теоретических соображений, пришли к конструкции, обеспечивавшей генератору некоторую реактивность, что способствовало более устойчивой работе генератора на цепь, содержащую несколько свечей соединенных последовательно.

При разработке этого генератора Яблочков не упустил из виду и задачи, которой он придавал исключительное значение, задачи о «дроблении света». Он пришел к мысли о необходимости разделять общее число свечей на отдельные группы из небольшого числа свечей, соединенных последовательно в каждой группе. При этом работа каждой группы не зависела бы от работы остальных, но при этой схеме для каждой группы пришлось бы иметь независимый источник тока, что представляло бы громадные трудности. И вот в генераторе Грамма по мысли Яблочкова была осуществлена идея получения от одной машины нескольких, не зависящих друг от друга токов. Именно кольцеобразная обмотка статора была разделена на несколько секторов, не соединенных друг с другом. К концу обмотки каждого сектора присоединялась группа свечей. Машины и получали названия по числу групп — 4, 6, 8 и т. д. Каждая группа свечей, конечно, при этом работала независимо от других.

Сконструированный генератор, известный под именем машины или альтернатора Грамма, получил большое распространение. Строился он на небольшие мощности и потому электрическая станция того времени, питавшая установку со свечами Яблочкова, имела странный для настоящего времени вид: большое число мелких машин и еще более мелких возбудителей, приводимых во вращение по большей части от общих приводных валов, помощью ременных передач (фиг. 10).

Оценку значения для электрического освещения альтернатора Грамма-Яблочкова, как его следовало бы называть, дал в своем труде известный французский электрик, Жубер, современник Яблочкова, писавший: «Применение машин переменного тока получило в последние годы сильное распространение, благодаря изобретению Яблочковым его свечи… Эта машина в настоящее время является единственной машиной, которая допускает дробление света…». В некрологе Яблочкова, помещенном в журнале Французского общества электриков, говорится: «Действительно, появление свечей Яблочкова развило применение машин переменного тока Сименса, Лонтена и др. и вызвало рождение машины переменного тока Грамма, большой коэффициент самоиндукции которой, обусловил ее успех, хотя в этом не отдавали себе отчета. Отсюда началось изучение машин переменного тока Жубером и другими исследователями».

Нужно отметить еще, что альтернатор Грамма-Яблочкова был первой машиной многофазного тока. Действительно, вследствие расположения секций обмотки по всей поверхности статора электродвижущие силы в каждой обмотке были различны по фазе и, следовательно, отдельные группы свечей питались токами разных фаз. Правда, цепь каждой фазы была совершенно независима от других, но подобное расположение применялось для многофазных токов и гораздо позже, например в генераторах двухфазного тока, в частности, в первых Ниагарских генераторах фирмы Вестингауз. Взаимное соединение цепей токов разных фаз было осуществлено впервые значительно позже при введении М. О. Доливо-Добровольским в практику трехфазных токов.

Таким образом, с изобретением машины Грамма решался вопрос о питании свечей Яблочкова переменным током, и на практике широкое применение получили только свечи переменного тока.

Альтернатор Грамма с разделенными, по мысли Яблочкова, обмотками статора, очевидно, решал частично и вопрос о «дроблении света». Но это решение не удовлетворило Яблочкова, именно, как решение частичное. Он стал искать других лучших решений и искания привели его к изобретению того прибора, который произвел в электротехнике под именем «трансформатора переменного тока» целый переворот.

Во французской привилегии № 115793 от 30 ноября 1876 г., Яблочков так описывает свое изобретение:

«Это изобретение имеет целью расположение токов для получения электрического света, которое позволяет включать в цепи, питаемой от одного источника тока, неопределенное число светильников как одинаковой, так и различной силы света, и которое позволяет вдобавок менять силу света светильников. В любой точке цепи я включаю индуктирующую катушку, через которую проходит ток от источника тока. Далее я помещаю надлежащим образом вторую катушку, в которой первая индуктирует ток. Оба конца этой второй катушки соединяются проводом, образуя цепь совершенно отдельную от первой. В нее включаются светильники в числе одного или нескольких.

Одним словом, пользуясь индуктирующим током первичного источника, развивают с помощью ряда катушек ряд индуктированных токов, позволяющих получать световые явления отдельно от каждой катушки, которая становится, таким образом, отдельным источником тока… Каждая индукционная катушка может быть помещена на любом расстоянии от светильника (люстры или подсвечника) или даже расположена в арматуре светильника. Светильники применяются различной силы света с одной, двумя или тремя свечами моей системы. Катушки делаются разных размеров, причем они рассчитываются так, чтобы они давали индуктированный ток, напряжение которого соответствовало бы и требованиям светильника».

Резюмируя все описанное в привилегии, Яблочков говорит: «Это изобретение состоит в расположении токов, служащих для электрического освещения, характеризующемся, в основном, применением индукционных катушек, включенных в общую цепь, служащих для возбуждения ряда индуктированных токов, образующих ряд отдельных источников тока, позволяющих питать от одного источника тока раздельно ряд светильников различной силы света».

Позже на это же изобретение Яблочков получил и русскую привилегию совместно с привилегией на свечу (привилегия от 6 апреля 1878 г.). Из чертежа, приложенного к описанию изобретения, видны схема включения индуктирующих обмоток индукционных катушек в цепь генератора тока и схема включения светильников в цепи обмоток, в которых токи индуктируются (фиг. 11).

Яблочков брал привилегию на применение индукционных катушек еще в тот период, когда применение переменного тока для питания свечей не было еще общепринятым. Поэтому в описании своего изобретения он говорит, что их можно применять и при постоянном токе, используя в первичной цепи прерыватель. На прилагаемой схеме такой прерыватель изображен в левой части схемы. Описание предложенной Яблочковым индукционной катушки и способы ее применения показывают, что им был изобретен и применен на практике тот прибор, который впоследствии получил название «трансформатора переменного тока». Правда, он этого термина не применяет, но в действительности его индукционные катушки представляют собой настоящие трансформаторы с двумя обмотками (фиг. 12).

Первичные обмотки Яблочков предложил включать в цепь источника тока последовательно. Это та схема, которая позже предлагалась многими изобретателями, в том числе Голардом и Гиббсом, которым обычно приписывают честь изобретения трансформатора. Предложение это выдвигалось еще в 1886 г. таким крупным электротехником, как Форбс, оспаривавшим даже самую возможность применения предложенного инженерами Циперновским, Дери и Блати способа включения первичных обмоток трансформаторов в ответвления от магистральных проводов, идущих от генератора, и предлагавшим или вести от генератора отдельную пару проводов к первичной обмотке каждого трансформатора, или лучше, включать все первичные обмотки трансформатора последовательно в цепь генератора.

Честь изобретения трансформаторов переменного тока принадлежит бесспорно Павлу Николаевичу Яблочкову. Этот приоритет многократно оспаривался, но наиболее беспристрастные историки техники, даже зарубежные, должны были его признать. Так, известный германский электрик Уппенборн в своей «Истории трансформаторов» пишет: «В 1878 г. мы встречаемся с первым опытом промышленного применения индукционных катушек для освещения; в этом году Яблочков взял немецкий патент № 1630, который и был практически применен им для питания своих ламп».

В весьма распространенном в 80-х годах французском «Курсе электротехники» Кадиа, написанном, когда история изобретения трансформаторов была еще у всех в памяти, говорится: «Принцип трансформаторов был указан впервые Яблочковым в 1876 г.». Такое же признание можно найти у многих других авторов.

Даже в Англии, где Яблочкову было отказано в выдаче привилегии на трансформатор, единственным чисто формальным мотивом отказа был тот, что сообщение о системе Яблочкова использования индукционных катушек было сделано в Обществе телеграфных инженеров 9 мая 1877 г., на 13 дней раньше подачи заявления о выдаче привилегии. Но затем приоритет Яблочкова был признан и в Англии.

На практике трансформаторы Яблочкова дали весьма хорошие результаты. Вот что, например, пишет Ипполит Фонтен в отчете об освещении Парижской всемирной выставки в 1889 г.: «Трансформаторы для свечей Яблочкова. Общество «Электрическое освещение» [20] показало впервые на Выставках автоматический подсвечник Бобенрайта и применение трансформаторов для питания свечей Яблочкова… Применение трансформаторов для свечей замечательно еще тем, что оно осуществляет два изобретения одного и того же электрика, так как Яблочков, создавший первую электрическую свечу, был также первым, кто указал принцип и способ применения трансформаторов. Благодаря применению подсвечников и трансформаторов, применение свечи стало совсем практично: установка со свечами стоит гораздо дешевле и эксплоатационные расходы гораздо меньше».

Тот же Фонтен, состоявший раньше председателем Административного совета общества «L'Eclairage Electrique», устроившего и эксплоатировавшего первую уличную установку электрического освещения на Авеню Оперы («Avenue de l'Opera») в Париже, замечает, что если бы этот способ питания (т. е. питание свечей через трансформаторы), был применен для освещения Авеню Оперы, то оно функционировало бы еще долгое время, а не было бы прекращено за убыточностью для Общества.[21] Позже, уже в 1892 г., это же французское Общество «L'Eclairage Electrique», защищая свои патентные права на трансформаторы, заявляло: «Проводя во Франции идею применения переменного тока, Общество «L'Eclairage Electrique» не могло остаться равнодушным к движению, которое уже несколько лет влечет электриков по новому пути, полному научного и промышленного интереса. Общество должно было пойти по этому пути еще и потому, что оно должно было исправить крупную ошибку, сделанную им раньше. Именно, среди многочисленных патентов, которыми оно владеет, имеется один, малоизвестный, определенно решающий вопрос относительно всех ныне появившихся патентов на трансформаторы: это патент Яблочкова от 30 ноября 1876 года и февраля 1877 года под № 115793, в котором описан и принцип действия и способы применения трансформатора. Приоритет Яблочкова в этом деле был признан в последнее время и в Англии». На фиг. 13 изображены трансформаторы Яблочкова в том виде, в котором они изготовлялись Французским обществом электрического освещения и часть пояснений, приведенных выше. В левой части сохранившегося листика видна надпись, сделанная рукой Яблочкова, «а почему же они 16 лет это не делали?».

Не сохранилось сведений, были ли применены трансформаторы Яблочкова в России для промышленных установок с его свечами. Известно лишь, что они демонстрировались на Электротехнической выставке 1882 г. в Петербурге.

На промышленной выставке в 1882 г. в Москве показывались опыты питания ряда свечей от общего генератора переменного тока посредством трансформаторов, но эти трансформаторы были конструкции другого русского же изобретателя Усагина. Трансформатор Усагина, как и трансформатор Яблочкова, был с разомкнутой магнитной цепью. Магнитный сердечник состоял из пучка железной проволоки. В отличие от трансформаторов Яблочкова, имевших различное число витков в первичной и вторичной обмотках, в трансформаторах Усагина число витков в обеих обмотках было одинаково. «Не должно смешивать, — говорится в отчете об опытах Усагина в журнале «Электричество», — бобин Усагина со спиралями для накаливания каолиновых пластинок, фигурировавших на прошлой выставке в Петербурге среди приборов Яблочкова. В спиралях Яблочкова внешняя проводка значительно тоньше внутренней, делает большее число оборотов. Здесь (в бобинах Усагина) одинаковая толщина и число оборотов делается равное. Катушки имеют длину 30 см, толщину 8 см. Толщина пучка железных проволок в сердечнике 4,8 см. Внешний вид бобины подобен внешнему виду спирали Румкорфа. В цепь машины (альтернативной) включаются последовательно внешние обмотки, внутренние составляют отдельные цепи, в которые, по желанию, включаются свечи Яблочкова, или же машины накаливания, или электродвигатели».

Демонстрации Усагина, произведенные на выставке в Москве в павильоне Яблочкова, в присутствии членов Технического съезда, привлекли большое внимание и, как пишет обозреватель: «изобретение заслужило громкое и единодушное одобрение со стороны членов Съезда. Изобретателя приветствовали аплодисментами».

Но несмотря на «громкое и единодушное одобрение», и в этот раз изобретение русского изобретателя было забыто. О трансформаторах стали говорить лишь после того, как в 1883 г. они были построены Голардом и Гиббсом и затем в 1885 г. Циперновским, Дери и Блати — инженерами фирмы Ганц и компания в Будапеште.

В России трансформаторы Яблочкова строились Морским ведомством в Кронштадте, повидимому, для опытов на флоте с каолиновыми лампами. Сохранившиеся в Минном офицерском классе в Кронштадте экземпляры этих трансформаторов уже в 90-х годах были использованы изобретателем радиотелеграфа А. С. Поповым при его опытах с лучами Герца, послуживших исходным пунктом для изобретений им же в 1895 г. «телеграфии без проводов».

Таким образом, в настоящее время мы можем считать доказанным, что П. Н. Яблочкову принадлежит честь изобретения и первого промышленного применения трансформаторов переменного тока. Ему же принадлежит честь первой попытки применения, опять-таки для цели, которую он называл «дроблением света» и которую было бы правильнее назвать «дроблением электрической энергии», приборов другого типа — конденсаторов. Мы знаем, с какими трудностями сопряжено и теперь применение конденсаторов для подобных целей, например для целей емкостного отбора энергии от проводов линий электропередачи, тем более нас может удивить смелость предложения системы питания свечей, основанного на применении конденсаторов, как это сделал Яблочков 70 лет тому назад. Именно в 1877 г. Яблочков взял во Франции привилегию (французский патент № 120684 от 11 октября 1877 г.) на «Систему распределения и усиления атмосферным электричеством токов, получаемых от одного источника тока с целью одновременного питания нескольких светильников».

Эта привилегия является характерным примером того, к каким выводам могло приводить, даже крупные умы, отсутствие знаний свойств цепей переменного тока, которые в то время были еще не изучены. В описании способа питания, предлагаемого Яблочковым, рядом с весьма правильными предложениями имеются и такие, ошибочность которых теперь ясна, но которые остались в то время не замеченными ни одним из современных Яблочкову физиков или электриков.

В пояснениях к привилегии Яблочков пишет: «Для того, чтобы получить полезные эффекты от тока, доставляемого источником динамического электричества, я вместо того, чтобы соединить зажимы источника тока между собою непрерывной цепью, как, это делается до настоящего времени, заставляю динамическое электричество, доставляемое источником электричества, претерпеть двойную трансформацию — сначала в статическое электричество, а затем снова в динамическое. Таков принцип моей системы. Осуществляю я его следующим образом: вместо того, чтобы соединять зажимы источника тока непрерывной цепью, как это делалось до сих пор, я соединяю проводник, идущий от одного зажима источника электричества, с одной из обкладок конденсатора, состоящего из одной или нескольких Лейденских банок большей поверхности или устроенного согласно указаниям, помещенным ниже.

Второй проводник я располагаю различными способами, главнейшие из которых изображены на предлагаемом чертеже (фиг. 14), именно: 1) Один из проводников (а) (фиг. 1), идущий от машины переменного тока (A), соединен с внутренними обкладками нескольких Лейденских банок (В) или конденсатора особого устройства (С). Внешние обкладки этих конденсаторов соединяются с одним из углей (D) моей свечи или с одним из концов каолиновой пластинки (E) другой лампы моей системы. Второй уголь свечи (D) или другой конец каолиновой пластинки присоединяется ко второму зажиму машины посредством проводника (а'). 2) Оба проводника (а) и (а') (фиг. 2), идущие от динамомашины переменного тока, присоединяются к внутренним обкладкам конденсаторов (В) и (С). Внешние обкладки этих конденсаторов присоединяются к приборам, дающим свет таким образом, что с ними соединится один уголь свечи (D) или один конец каолиновой пластинки (Е), причем второй уголь или второй конец пластинки присоединяется к земле. 3) Оба провода, идущие от машины (фиг. 3), присоединяются к внутренним обкладкам конденсаторов, внешние обкладки которых или присоединяются к земле (левая сторона рисунка), или к нескольким остриям (правая сторона рисунка), облегчающим утечку тока в воздух. Источник света включается между обкладками… Включение конденсаторов не только позволяет распределить ток по разным направлениям, оно имеет еще целью развитьатмосферное электричество, которое аккумулируется в конденсаторах, откуда оно, в форме тока, направляется в источник света. Поэтому сумма количества электричества, посылаемая в эти источники света, больше, чем количество электричества, доставляемого первоначальным источником тока, и, следовательно, она дает более сильный свет, чем тот, который дал бы источник электричества, непосредственно работающий на источник света…». «Резюмируя, я хочу настоящей привилегией обеспечить исключительное право на придуманную мною систему для распределения и усиления токов, получаемых от одного источника тока… как на отличительные свойства моей системы я указываю:

1. Превращение динамического электрического тока в статическое электричество при помощи конденсаторов и обратное превращение этого статического электричества в электрический ток, направляемый к источникам света.

2. Добавление к токам, получаемым от одного искусственного источника электричества, токов, получаемых от естественного атмосферного электричества, которое становится применимым и аккумулируется в конденсаторах».

В приведенном тексте привилегий на применение конденсаторов наиболее поражает заключение о получении тока за счет атмосферного электричества. Однако, это становится понятным, если вспомнить, как мало были известны, или совсем неизвестны, во времена Яблочкова законы, управляющие переменными токами. Совершенно не была ясна роль, которую играют индукция и емкость в цепях; о разности фаз между силой тока и напряжением не имели никакого представления. Казалось совсем недопустимым, чтобы в разветвленной цепи, питаемой от одного источника переменного тока, сумма сил токов в ответвленных целях была бы больше, чем сила тока в цепи до ее разветвления. Единственным допустимым объяснением этого явления казалось то, что эти разветвления питаются еще от какого-то добавочного источника электричества. Яблочков и решил, что таким добавочным источником является атмосферное электричество. Яблочков, конечно, ошибался, не разобравшись в этом сложном явлении. Это и не удивительно, если принять во внимание, что даже самые крупнейшие физики той эпохи, как, например, Маскар или Варрен-Деларю, присутствовавшие на опытах Яблочкова, не могли дать объяснения этому явлению. При опытах Яблочкова, в которых принимали участие Маскар и Варрен-Деларю, случилось, что сумма сил токов от обкладок конденсаторов в землю превышала в 2 раза силу первичного тока. Увеличение сил токов особенно замечалось при наличии в цепях катушек. Варрен-Деларю, особенно интересовавшийся опытами Яблочкова, предложил называть конденсаторы, если они включаются в цепь последовательно с лампами, — эсситаторами, а если включаются между проводами, — аккумуляторами.

Таким образом, Яблочкову принадлежит не только приоритет в изобретении трансформаторов переменного тока, но и инициатива практического применения статических конденсаторов.

Для этих конденсаторов Яблочков придумал и особую конструкцию, вполне аналогичную с конструкцией применяющейся и поныне (фиг. 14 — фиг. 4).

Системы освещения с помощью свечей и каолиновых ламп и система распределения тока (дробление света) с применением индукционных катушек (трансформаторов) и статических конденсаторов, предложенных Яблочковым, возбудили большой интерес и много надежд.

По сведениям, сообщавшимся в свое время В. Н. Чиколевым, опыты над их применением, демонстрировавшиеся Яблочковым на Парижской выставке 1878 г., вызывали даже аплодисменты посетителей. Особенно заинтересовалась работой Яблочкова Парижская академия наук, образовавшая для ознакомления с нею особую комиссию, в состав которой вошли такие знаменитости, как Сен-Клер-Девиль, Эдмонд Беккерель, Бертло и др. В заседании Академии выступивший с докладом инж. Денейруз, говоря о каолиновой лампе, так характеризовал изобретения Яблочкова:

«При применении переменного тока система сводится к центральной артерии, образуемой рядом внутренних обмоток индукционных катушек, от внешних обмоток которых ответвляется столько отдельных цепей, сколько имеется отдельных катушек. Распределение электричества становится аналогичным распределению газа. Приборы для освещения предельно просты. Они сводятся (в каолиновой лампе) к паре зажимов, между которыми укреплена фарфоровая пластинка. При длине в 1 сантиметр она может гореть всю ночь.

Таким образом, Яблочков добился: 1) полнейшего дробления электрического света; 2) постоянства этого света; 3) возможности разделения света во всех пропорциях — малых, средних и больших и 4) устранения углей в лампах малой и средней силы света (в каолиновых лампах)».

В этом резюме характерны опять подчеркивание решения задачи о «дроблении света» и подчеркивание аналогии системы распределения электрического тока с системой распределения газа, т. е. подчеркивание решения задачи, которую преследовали все изобретатели-электротехники той эпохи, включая Эдисона.

О предложенном Яблочковым применении конденсаторов совершенно забыли, хотя демонстрации этого применения всегда вызывали большой интерес и иногда даже овации. О нем вспомнили на Международном электротехническом конгрессе в Париже в 1932 г. (собранном в честь 50-летия первого конгресса 1881 г.), на котором один из наиболее уважаемых электриков, Бетено, в своем докладе «Парижская электрическая выставка и ее влияние на развитие науки и техники», неоднократно упоминая имя Яблочкова, писал по поводу применения конденсаторов:

«Яблочков, смерть которого в 1894 г. последовала после многих повторных неприятностей, понял большое значение для промышленности переменных токов и придумал применение индукционных катушек для их трансформации. Он пошел даже гораздо дальше: полученные из разных источников документы, пополненные воспоминаниями нашего старого друга Штернфельда, который был одним из сотрудников Яблочкова при установке электрического освещения на Avenue de l'Opera, свидетельствуют, что русский изобретатель применял с самого начала своих исследований электрические конденсаторы для улучшения работы своих установок переменного тока. Из этих документов наиболее доказательным является маленькая книжка под названием «Электрическое освещение», изданная в 1883 г. Дю Монселем. На стр. 181, том II находим следующее, приводящее в изумление, сообщение: «Для того, чтобы увеличить световую мощность электрических свечей, Яблочкову пришла мысль применять конденсаторы с большой поверхностью, которые вызывают увеличение и напряжения и силы переменного тока… Если в цепь индукционной катушки, питаемой переменным током и дающей искру в 5 мм, включить конденсатор приблизительно площадью 20 квадратных метров, то получается вольтова дуга в 30 мм длиной, и угольные стержни в 4 мм в диаметре накаляются докрасна на длину от 6 до 10 мм от концов. Наконец, если имея некоторое число конденсаторов соединить их (дальше идет описание метода соединения), то получаются явления, весьма подобные явлениям электростатическим». Читая эти строки, совершенно теряешься! Итак, на 10 лет раньше исторических, действительно знаменитых трудов Леблана, Бушеро и пр., другой гениальный изобретатель (Яблочков) в действительности применил конденсаторы для распределения энергии переменным током и устроил действительно avant la lettre резонансный трансформатор… В дальнейшем Дю Монсель дает детальные описания конденсаторов и говорит, что они имели по 400 кв. метров на каждую свечу Яблочкова и что они состояли из листов олова, разделенных парафинированной бумагой».

Цитата из доклада Бетено ясно подтверждает, что в 1932 г. на Международном конгрессе электриков ни у кого не возникало сомнения в приоритете Яблочкова на изобретения трансформатора и на применение конденсаторов в цепях переменного тока.

Однако, по многим причинам широкое распространение получила одна только свеча Яблочкова и притом самого простого устройства, т. е. две угольные, рядом поставленные палочки, разделенные слоем тугоплавкого изолирующего вещества (каолина). Но зато успех этой свечи был феерический.

О свече Яблочкова мировой электротехнический журнал того времени «La Lumiere Eleclrique» в 1879 г. писал: «Из всех электрических ламп самая важная по размерам применения и до настоящего времени, без сомнения, самая оригинальная — это свеча Яблочкова». В этом же журнале перепечатывалось следующее извлечение из известий Парижской академии наук: «Свеча Яблочкова вызвала в Париже, как впрочем и в других местах, целое движение в пользу электрического освещения. Ей безусловно мы обязаны тем, что электрическое освещение стало обычным способом освещения. По справедливости в истории возникновения электрического освещения ей нужно отвести очень заметное место, которого она вполне заслуживает».

Описанию свечи и ее работы в том же журнале посвящено особое приложение.

Дошли свечи Яблочкова даже до Америки. В журнале Американского института инженеров-электриков уже в 1924 г. было написано: «Первое применение электрического освещения магазинов относится к 26 декабря 1878 г. в Филадельфии в магазине Ванемара… Электрический свет в магазине Ванемара давали свечи Яблочкова. Это был один из самых ранних типов дугового света».

Первая установка уличного освещения была в Париже.

Из Парижа свечи перешли в Лондон. Затем в множестве других городов стало устраиваться освещение «свечами Яблочкова» — на улицах, во дворах, магазинах, на заводах, в мастерских, в гаванях и т. д.

«Именно в Париже, — писал Яблочков некоему Беллиго, — было впервые в мире устроено электрическое освещение улиц и из Парижа электрическое освещение распространилось по всему миру, дойдя до дворца шаха Персидского и до дворца Короля Камбоджи». И это была правда. Свечи фабриковались в громадном количестве и расходились по всему миру. Даже в США и притом в 1883 г., т. е. после появления лампы Эдисона, свеча Яблочкова продолжала интересовать электриков. Американский журнал «Electrical World» в 1883 г. дает подробное описание свечи и особым ее достоинством считает, что от одной машины можно питать «дюжину свечей» и что свеча кроме зеленых лучей дает еще одновременно лучи красные и фиолетовые. Нельзя не отметить, что, по словам одного парижского хроникера, многие из публики, любовавшиеся освещением свечами Яблочкова, были глубоко убеждены, что свет происходит от электрических искр между углями, производимых гигантскими электрическими машинами со стеклянными кругами, вращаемыми паровыми машинами.

Распространение свечи повлекло значительное и очень быстрое падение ее цены: если в марте 1878 г. «свеча», дававшая 30 карселей (около 300 свечей), стоила 0,75 франка, то через два года, в марте 1880 г., свеча уже в 45 карселей (около 450 свечей) стоила всего 0,40 франка. Соответственно понизились и цены на машины для питания свечей. Так, в марте 1878 г. машина для питания 16 свечей Яблочкова стоила 1873 франка на каждую свечу, а в марте 1886 г. — всего 484 франка на свечу. Это падение цен, конечно, еще больше способствовало распространению свечи.

Дела Общества, эксплоатирующего изобретение Яблочкова, шли блестяще. Сам Яблочков стал богатым человеком и из номера студенческой гостиницы уже перешел жить в громадную квартиру, где он и устроил себе лабораторию.

«В 1878 г., — пишет М. Н. Яблочкова. — Павел Николаевич жил уже на улице Неаполь, занимая две смежные квартиры, в одной из которых он устроил себе частную лабораторию. Характером он был очень гостеприимен, да, кроме того, не придавал: большого значения деньгам, и, имея их, тратил, не считая, и давал всем, кто попросит. Его квартиру прозвали: «Ресторан Яблочкова, где едят и пьют даром». Сам Яблочков часто уходил от гостей в свою лабораторию и долго работал там, забыв, что у него гости».

Лабораторной работы он не бросал никогда. Полным триумфом была для Яблочкова Всемирная парижская выставка 1878 г., где свеча Яблочкова была одним из «гвоздей». Триумф на выставке еще более усилил распространение свечей Яблочкова, которое длилось еще долго, несмотря на появление в начале 1880 г. лампы накаливания и громадного прогресса в устройстве дуговых ламп-регуляторов, работавших более экономично, чем свеча. Свеча Яблочкова фигурировала и применялась для освещения и на электрической выставке 1881 г. в Париже и на всех последовавших выставках, включая Всемирную парижскую выставку 1889 г. На этой последней выставке было установлено для освещения всего 1479 дуговых ламп, из них 166 свечей Яблочкова. Из дуговых ламп прочих систем только регуляторы двух систем были установлены в числе, превышающем число свечей Яблочкова, именно, 209 ламп системы Грамма и 178 ламп фирмы Пильзен. Лампы других систем фигурировали в гораздо меньшем числе.

С начала 90-х годов лампы накаливания и дуговые регуляторы уже усовершенствовались настолько, что совершенно вытеснили менее экономичные электрические свечи.

Парижская выставка 1878 г., сыгравшая такую роль в успехе Яблочкова, была местом, где началась драма в жизни Яблочкова, приведшая его к почти полной нищете. Именно на выставке возникла у него мысль реализовать в России эксплоатацию своего изобретения, закончившаяся полной неудачей. Павел Николаевич всегда болел душой о том, что его изобретение эксплоатируется за границей, а не у него на родине. Он предлагал передать даром свое изобретение русскому Военному министерству и только, не получив даже ответа на свое предложение, продал свои права Французскому обществу.

Во время выставки у Яблочкова явилась надежда на исполнение его заветного желания: выставку посетил великий князь Константин Николаевич, русский генерал-адмирал, стоявший во главе Морского ведомства, и вместе с ним Николай Григорьевич Рубинштейн— организатор Московской консерватории, в то время состоявший ее директором. Увлекшись изобретениями и идеями Яблочкова, Константин Николаевич и Рубинштейн предложили Павлу Николаевичу финансовую помощь и всякое содействие к перенесению его деятельности в Россию. Яблочков с энтузиазмом согласился. Рубинштейн имел большие связи с московскими капиталистами и пытался привлечь их к участию. В числе лиц, вступивших в дело Яблочкова, были не только промышленники и капиталисты, но и другие лица, горячие поклонники свечи Яблочкова.

Но для получения права эксплоатации патентов Яблочкова в России нужно было выкупить эти права у Французской компании и заплатить за них миллион франков. Яблочков без всякого колебания сделал это, уступив Французскому обществу все принадлежавшие ему акции Общества. Этот поступок положил конец благосостоянию Яблочкова и начало тем бедствиям, которые он претерпел в дальнейшем.

Великий князь дал средства на начало организации дела, и Яблочков уехал в Петербург, где основал общество под фирмой «Яблочков-изобретатель и К°. Товарищество электрического освещения и изготовления электрических аппаратов и машин в России» и устроил в Петербурге, на Обводном канале электротехнический завод. Завод на первое время занимался больше монтажной и ремонтной работой и изготовлял лишь предметы для монтажа, как-то: прерыватели, коммутаторы и т. п. Завод готовил, конечно, и свечи Яблочкова из углей, получавшихся из Франции, так как в то время он своих машин (прессов и т. д.) для выделки углей не имел.

В дальнейшем завод развился, стал изготовлять аккумуляторы, лампы накаливания, провода и кабели, разную аппаратуру и даже электроизмерительные приборы. Фактически завод был большой опытной мастерской, в которой изготовлялись не только опытные образцы, но и производился ряд исследований, настоящих научных исследований, как, например, изучение влияния проводов переменного тока на другие провода, в частности, на провода связи и т. п. Надо заметить, что о вредном влиянии проводов переменного тока тогда много кричали защитники исключительного применения постоянного тока и вопрос об этом влиянии был даже поставлен в Английской парламентской комиссии по изучению электрического освещения. Для Яблочкова он имел, конечно, особо большое значение. Большой деятельности завод Товарищества Яблочкова не мог развить, так как в ту эпоху (самый конец 70-х годов) никаких сколько-нибудь значительных электротехнических, кроме разве телеграфных, установок в России не было. Были только отдельные попытки применить электрическое освещение для специальных целей. Пожалуй, впереди шел наш Военно-морской флот: в Кронштадте, на судах и в портах Балтийского и Черного морей велась работа с электроосветительными установками. В английской прессе того времени встречаются указания, что успех русских в борьбе с турецким флотом (во главе которого стоял английский адмирал Гобарт-паша) во многом определился умелым применением на русском флоте электроосветительных установок и других электрических приспособлений.

Вероятно, в этом интересе русского флота к применениям электричества и лежит причина, почему так заинтересовался на Парижской выставке 1878 г. изобретениями Яблочкова генерал-адмирал русского флота.

В Петербурге Яблочков поселился в доме на углу Литейного проспекта и Бассейной улицы (ныне улицы Некрасова) в доме Краевского, получившем затем большую известность, так как в этом доме в свое время жили знаменитый русский хирург Пирогов, а затем народный поэт Некрасов, о чем свидетельствуют две мемориальные доски, установленные на стене дома.

В комнатах этого дома, выходящих окнами на улицу, производилась, по свидетельству Марии Николаевны Яблочковой, ежедневная демонстрация «свечей Яблочкова». В квартире собиралось много интересующихся новым освещением, но еще большее число зрителей смотрело с улицы через окна. Демонстрация внешнего освещения свечами Яблочкова началась в Петербурге в 1879 г. В марте этого года Яблочковым было устроено пробное освещение Литейного моста через Неву. На мосту было установлено всего 8 фонарей. В апреле, в связи с периодической разводкой моста, демонстрации были перенесены на площадь Александрийского театра (ныне театра им. Пушкина), где они производились до первых чисел мая. Ежедневно показывались опыты зажигания и тушения фонарей, причем публика предупреждалась об этом свистком. На площади горело 5 фонарей. На фиг. 15 воспроизведены схема расположения ламп на площади Александрийского театра (ныне площади Островского) и кривые освещенности как для электрического, так и для газового освещения.

После этих опытов Яблочковым совместно с В. Н. Чиколевым был разработан проект постоянного освещения Литейного моста. Доклад об этом освещении интересен в том отношении, что в нем говорится об «освещенности», выражаемой в «свечах-метрах», т. е. вводится уже единица освещенности, равная освещенности, производимой «одной свечей (спермацетовой) на расстоянии одного метра». В этом же докладе дается распределение освещенности по разным местам моста и приведены полученные кривые освещенности.

Производилось и опытное освещение заводов свечами Яблочкова. Из этих опытов заслуживает внимания опыт освещения переборочной мастерской Охтенского капсюльного завода. Заслуживает этот опыт внимания потому, что отчет об этом освещении, помещенный в только что созданном журнале «Электричество», содержит данные, характеризующие то освещение, которым пользовались в то время на заводах и мастерских. Опытное освещение мастерской производилось пятью свечами Яблочкова, дававшими вместе 1500 свечей. Освещение обходилось в 1 руб. 27 коп. в час. Нормально освещение мастерской производилось 50 жировыми лампами, в которых горел гусиный жир. Все 50 жировых ламп давали вместе 600 свечей. При цене гусиного жира в 6 руб. 50 коп. за пуд освещение мастерских жировыми лампами обходилось в 1 руб. 20 коп. в час. В отчете об опытном освещении подчеркивается, что хотя освещение жировыми лампами обходится на 5,39 % дешевле электрического, но все же последнее предпочтительнее, так как оно дает во много раз лучшее освещение, «что позволяет улучшить условия работы мастерской». Это, вероятно, — первое указание влияния освещения на условия труда.

После этих опытов электрическое освещение свечами Яблочкова стало довольно быстро распространяться, хотя и в небольших размерах, как в Петербурге, так и в других городах России: в Москве, Нижнем-Новгороде, Полтаве и даже в Красноводске. Освещались электричеством фабрики и заводы (в Петербурге заводы Балтийский, Обуховский (ныне «Большевик»), Ижорский, Берда (ныне им. Марти), Охтенский и др.), театры и т. п. К 1881 г. в России было уже установлено более 500 фонарей. Все же в России свечи Яблочкова не получили такого распространения, как за границей. Одной из причин этого было то обстоятельство, что с начала 80-х годов уже начали появляться усовершенствованные регуляторы, распространяемые в России иностранными фирмами, гораздо более мощными, чем фирма «Яблочков-изобретатель и К°», а затем появились и лампы накаливания. За границей, где было уже выполнено много осветительных установок по системе Яблочкова, газовое освещение продолжало существовать и даже росло до самого начала 90-х годов. Интересно отметить, что и в России, где газовое освещение имелось в весьма небольшом числе городов, Яблочкову все же пришлось, как и за границей, выдерживать борьбу с могущественными газовыми обществами, работавшими на иностранном капитале, которые стремились через своих сторонников всячески дискредитировать электрическое освещение. Кроме кампаний в периодической печати была выпущена даже специальная брошюра: «Современное состояние вопроса об электрическом освещении и сравнение его с газовым». В этой брошюре, как характеризовал ее сам Яблочков, «добросовестно скомбинировано всё, что только было говорено против свечи. Цифры взяты наиболее извращенные, так что в конце концов ее смело можно назвать одним из совершенных представителей этого рода литературы». А по «этого рода литературе» выходило, что электрическое освещение и самое дорогое (дороже освещения гусиным жиром, не говоря уже о газовом), и самое ненадежное, и самое вредное для глаз, и искажает естественную дневную окраску и т. п. Слухи об искажении окраски были настолько упорны, что Английская парламентская комиссия должна была заняться этим вопросом. В протоколах Комиссии записано: «что касается оттенка электрического света, то английские леди весьма им недовольны: они находят, что он придает какую-то мертвенность физиономии» и т. д. На помощь английским леди явились фабриканты косметических средств, выпустившие в продажу специальные изделия для устранения «мертвенности физиономий» при электрическом освещении.

С аналогичным заявлением выступили и торговцы рыбой, заявив, что электрический свет придает рыбе цвет, не привлекающий покупателя. Комиссия, не отрицая возможности влияния света на цвет рыбы, все же приписала факты, указанные рыботорговцами, недостаточности освещения и плохому расположению светильников.

Таких курьезов было много, но в основе всех жалоб лежала борьба между электричеством и газом, сопровождавшаяся отчаянной биржевой игрой. Даже некоторые крупнейшие электротехники того времени сомневались в применимости электрического освещения для целей иных, чем уличное освещение и освещение больших помещений. Так, известный французский электротехник, главный инженер завода Грамма и автор весьма распространенной книги «Электрическое освещение» — Ипполит Фонтен в то время писал: «Для жилых помещений газовое освещение является самым приятным, удобным и дешевым. Электрическое освещение, возможно, найдет применение для отдельных больших комнат, и в парадных квартирах, но это будет такими редкими исключениями, что излишне обращать на них внимание. Несмотря на конкуренцию, которая возникает в отдельных случаях между газовым и электрическим освещением, газовая промышленность в своем развитии никогда не потерпит ущерба от электрического освещения. Никогда электрический свет не нанесет ущерба газу, масляным лампам и свечам». Не прошло и нескольких лет, как Фонтен должен был коренным образом изменить свое мнение. В одном он оказался прав: действительно, развитие электрического освещения не помешало развитию газовой промышленности, но она развивалась уже совсем в другом направлении.

В Петербурге борьба газа с электричеством принимала иногда весьма странные формы. Так, под влиянием гласных, связанных с газовыми обществами, освещавшими город, Петербургская Городская Дума, как только истек срок контракта с «Товариществом Яблочкова» на освещение Литейного моста, отказалась возобновить его.

Как пишет В. Н. Чиколев: «Дума поспешила, насколько это было в ее силах, покончить с конкуренцией электрического освещения: изящные электрические фонари были заменены теперешними чепчиками, изображающими из себя какие-то грязные коптилки». В свое время решение Думы устроить электрическое освещение Литейного моста было принято только потому, что газовые акционеры относились тогда еще пренебрежительно к электрическому освещению и не подготовили оппозиции.

Оппозицию встречал Яблочков не только среди защитников газа, но и среди электриков. Многие сторонники электрического освещения считали яблочковские свечи, с их изолирующей прокладкой, весьма несовершенными лампами; свечам ставились в упрек и неровность горения, и трудность зажигания после погашения, и относительная неэкономичность работы свечей, происходящая от потерь на испарение изолирующего слоя, и окраска их света вследствие влияния изолирующей прокладки, и еще многое другое. Даже некоторые русские электротехники присоединялись к этим возражениям против свечи, противопоставляя им лампы с регуляторами. Среди них был и старейший русский электротехник, сам когда-то помогавший Яблочкову во время его первых шагов в Москве, Владимир Николаевич Чиколев. Он в то время работал над усовершенствованием изобретенной им лампы с дифференциальным регулятором, полемизировал с Сименсом по поводу приоритета в изобретении дифференциальной лампы и был совершенно увлечен перспективами, которые, ему казалось, открывал изобретенный им регулятор. Яблочкову после приезда в Петербург пришлось многократно выступать и устно и в печати в защиту своих свечей и полемизировать с их противниками. В этих выступлениях Яблочков не только говорил о световых качествах и простоте своих свечей, но особенно настаивал на том, что с их помощью ему удалось решить вопрос о «дроблении света» и тем сделать электрическое освещение конкурентоспособным с газовым. Эта конкурентоспособность особо интересовала всех, так как в публике циркулировали по этому поводу самые разнообразные слухи. Об этой конкурентоспособности в отношении стоимости Яблочков в одном из своих выступлений в Русском техническом обществе говорил с большой осторожностью: «Приверженцы электрического освещения очень часто преувеличивают его дешевизну. С другой стороны, последние успехи электрического освещения слишком сильно затронули интересы газовых компаний и они, в свою очередь, стали преувеличивать стоимость его в противоположную сторону. Насколько электрическое освещение дешевле газового, пока трудно определить».

На этих же вопросах Павел Николаевич остановился в своей публичной лекции «Об электрическом освещении», организованной Русским техническим обществом 4 апреля 1879 г. Эта лекция была событием в научной и технической жизни Петербурга. Все помещения Русского технического общества в Соляном городке были освещены свечами Яблочкова, наплыв слушателей был огромным. Лекция возбудила настолько большой интерес, что ее пришлось напечатать отдельным изданием.

В Петербурге и по всей России заговорили о «свече Яблочкова». Молодой завод «Яблочков-изобретатель и К°» получил сразу много заказов.

В связи с этим сильно возрос среди технического и ученого мира интерес к электротехнике. Почувствовалась необходимость в организации электротехнического центра. Группой членов Русского технического общества, душой которой были пионеры русской электротехники: Чиколев, Лодыгин, Булыгин, Лачинов и ряд других во главе с П. Н. Яблочковым, был поднят в Техническом обществе вопрос об организации особого (VI) отдела Общества, посвященного вопросам электротехники. Их инициатива увенчалась успехом, и Электротехнический (VI) отдел был организован. Председателем был избран генерал Ф. К. Величко, много способствовавший организации отдела, товарищем председателя — П. Н. Яблочков. О том значении, которое получил новый отдел в истории русской электротехники, надо говорить особо (см. главу XI). Павел Николаевич принимал в установлении программы работы нового отдела и в самой его работе самое активное участие, и трудам Яблочкова в значительной степени отдел обязан и своими первыми успехами.

Русское электротехническое общество было одним из первых в мире специальных электротехнических обществ. Даже Французское общество было основано лишь в 1883 г. Нельзя не отметить, что и в организации Французского общества Яблочков принимал активное участие в качестве одного из основателей. Сохранилось письмо от 3 июля 1883 г. члена Французской академии наук Леруа, директора Парижской обсерватории, состоявшего председателем Комитета для организации общества.

Извещая Павла Николаевича об избрании его членом Организационного комитета и о времени первого собрания комитета, Леруа пишет: «Напоминаем Вам, Вы избраны членом Организационного Комитета Societe des Electriciens, почетным председателем которого состоит Министр Почт и Телеграфов Кошери. Комитет собирается 7 июля… мы надеемся, что Вы примете участие в работах Комитета, и придаем особое значение Вашему присутствию на первом же заседании». Яблочков принимал участие и в работах другого Французского общества, в котором рассматривались вопросы электротехники до основания специального электротехнического общества. Именно уже в 1876 г. он был выбран, как сообщает секретарь общества Д'Альмедиа, действительным членом Французского физического общества.

Немедленно по открытии VI отдела Русского технического общества, по инициативе группы членов и, в частности, самого Яблочкова, отделом было принято решение приступить немедленно к изданию специального журнала, посвященного вопросам электротехники. Так возник журнал «Электричество», первый номер которого вышел в июле 1880 г. Павел Николаевич принимал непосредственное участие в редактировании нового журнала, имевшего с первых дней большой успех, сопровождающий его до настоящего времени, в течение почти семидесяти лет. Первым редактором журнала стал один из крупнейших наших электротехников В. Н. Чиколев.

Нужно заметить, что в 1880 г. и за границей было мало специальных электротехнических журналов. Существовали один английский и один американский журналы, преобразованные из телеграфных журналов, и только в конце 1879 г. начали выходить журналы электротехнические французский и немецкий. По времени выхода первого номера в свет «Электричество» является одним из первых пяти журналов.

По инициативе Павла Николаевича была устроена VI отделом и Электротехническая выставка, открывшаяся в том же 1880 г.

Мысль устроить в России специальную электротехническую выставку в то время, когда такой выставки не пробовали устраивать еще нигде в мире, ни в Америке, ни в Западной Европе, была, конечно, очень смелой. Но смелость мысли была отличительной чертой наших пионеров-электротехников. Первая в мире специальная электротехническая выставка была организована и открыта в марте 1880 г. в Петербурге, в помещении Русского технического общества в Соляном городке. Задачей выставки было «показать обществу современное состояние развития различных отраслей электротехники». Эта цель и была достигнута. В различных отделах выставки демонстрировались достижения тогдашней электротехники. Особый интерес возбуждал отдел электрического освещения и электродвижения, где экспонировали свои работы, во-первых, завод «Яблочков-изобретатель и К°» и ряд наших пионеров-электротехников: Лодыгин, Булыгин, Лачинов и др. Экспонентами были также такие учреждения, как Артиллерийское ведомство и Минный офицерский класс Морского ведомства. В числе экспонатов завода «Яблочков и К°» фигурировали и электроизмерительные приборы. Это, вероятно, первые электротехнические измерительные приборы, изготовлявшиеся каким-нибудь заводом в России. За свои экспонаты завод Яблочкова был награжден медалью. Выставка имела успех. Число посетителей по тогдашнему времени было очень большое: за период выставки (с 27/III по 16/IV 1880 г.) выставку посетило 6187 человек. Наибольшее внимание привлекал стенд Яблочкова. Была весьма полно представлена «Система освещения Яблочкова». По стенам были размещены схемы, объяснительные рисунки, поясняющие способы соединения свечей в фонарях и фонарей между собой и т. п. На столах были расположены приборы, употребляемые при фабрикации свечей, и самые свечи в различных стадиях производства. Экспонировались также принадлежности для освещения свечами, как-то: подсвечники, матовые шары, кронштейны и т. п., а также приспособления, необходимые для того, чтобы сделать освещение по системе Яблочкова вполне надежным. Интересно отметить, что среди последних были выставлены изобретенный В. Н. Чиколевым «автоматический переводитель, который через каждые 1,5 часа переводил ток на следующие свечи» и изобретения Хотинского — «автоматическое реле, переводящее ток в случае потухания одной свечи на следующий нумер», и «электромагнитный нумератор, показывающий, которая из свечей горит в данную минуту», и «пневматический переводчик в случае догорания свечи». На стенде были выставлены также «динамо-электромашины» (генераторы) для питания свечей с их возбудителями. Объяснения посетителям давали изобретатели, в том числе Яблочков и Чиколев. Одним из объяснителен был А. С. Попов, а также-известный химик акад. Бутлеров, демонстрировавший, новые тогда «приборы Крукса для показания лучистого состояния материи».

Выставка освещалась преимущественно свечами Яблочкова. Эти свечи были «гвоздем» выставки.

Несмотря, однако, на весь интерес, который возбудили в России изобретения Яблочкова, и несмотря на его бурную деятельность в период 1879–1880 гг., которые он провел в России, делая только временами наезды в Париж, все же дела Товарищества Яблочков-изобретатель и К° шли не блестяще. Даже некоторые привилегии Яблочкова в России были аннулированы «за непредставлением удостоверения о введении изобретений в употребление». И недостаток денежных средств, и технические и промышленные условия тогдашней России, и политические условия (Русско-Турецкая война, сопровождавшаяся Берлинским конгрессом) не благоприятствовали развитию предприимчивости и прогрессу новой отрасли промышленности.

Немалую роль в неуспехе играли неопытность и неумелость в финансовых и коммерческих делах и самого Яблочкова и его ближайших сотрудников.

«Так как, — сообщает в своих письмах Мария Николаевна Яблочкова, — менее практического человека, как Яблочков, трудно было встретить и выбор сотрудников был неудачный, то деньги были истрачены, мысль об устройстве Русского общества с капиталом извне не удалась, и дело в России заглохло».

Повидимому, были и другие причины к отъезду Павла Николаевича из России. Уже вскоре после своего приезда из Парижа в Россию, несмотря на репутацию миллионера и ореол мировой известности, Яблочкову пришлось иметь немало неприятных разговоров с высшими представителями полицейской власти в России. Для этих властей были подозрительными и его знакомство с некоторыми членами русской политической эмиграции в Париже, и материальная помощь, которую он оказывал некоторым из эмигрантов. По-видимому, некоторое значение имела и его связь с генерал-адмиралом Константином Николаевичем, которого охранные круги обвиняли в либерализме и чуть ли не в сочувствии террористам. В своих письмах Мария Николаевна Яблочкова пишет, что Яблочков уехал из России в Париж «ввиду еще некоторых обстоятельств, касающихся положения великого князя Константина Николаевича, на которого верхи смотрели недоброжелательно».

Поездка в Россию и русские дела совсем исчерпали средства Яблочкова. Уехав в Петербург богатым человеком, он вернулся в Париж уже без всяких средств. Свои французские акции Яблочков отдал за право эксплоатации своих патентов в России, но эта эксплоатация не дала ему никаких денег.

«В Петербурге, — пишет М. Н. Яблочкова, — он бросил свою роскошную квартиру, поручив знакомым ее распродать, и приехал обратно в Париж, где, к счастью, он сохранил свою квартиру на улице Неаполь. Вернулся он в Париж снова бедным, но имея новое изобретение— его динамомашину, которую он продал своему же Обществу и снова поступил в Общество инженером».

Разочаровавшись в возможности развить свою деятельность в России, Яблочков отказался от звания товарища председателя VI отдела Технического общества и в конце 1880 г. уехал обратно в Париж; его там ждала кипучая деятельность: приближалось время: открытия Первого международного конгресса электриков и первой международной электротехнической выставки в 1881 г. Всем известна роль, которую сыграл в деле развития электротехники этот конгресс и выставка. Можно сказать, что со времени Первого электротехнического конгресса и Первой всемирной электротехнической выставки начинается современная электротехника; 1881 г. — это эра, от которой надо считать года развития этой новой отрасли знания. Главнейшим результатом работы конгресса, собравшего всех корифеев электрической науки, в числе которых был проф. А. Г. Столетов, было установление системы практических электрических единиц, которой мы пользуемся до настоящего времени и которой, вероятно, будем пользоваться еще долго. Установление определенной системы единиц дало громадный толчок развитию электротехники. Выражение знаменитого мыслителя: «Знать— значит уметь измерить», оказалось особенно применимым к электротехнике.

Какое значение придавалось конгрессу, видно из того, что первое его собрание происходило во Дворце Елисейских полей, а французские члены конгресса были официально назначены правительством. В числе их был и Яблочков. Сохранилось письмо Министра почт и телеграфа Франции, извещавшее Яблочкова о назначении его Французским правительством членом Международного конгресса электриков.

Огромное значение имела также выставка 1881 г. На выставке были представлены все достижения всего мира в области науки, техники и промышленности, охватываемые понятием «электротехника». На этой выставке впервые полностью демонстрировалась «система электрического освещения Эдисона» с его лампами накаливания, быстро распространившаяся по всему миру. Одновременно на выставке демонстрировалось электрическое освещение по системе Яблочкова с применением переменного тока, трансформаторов, конденсаторов и свечей.

В организации русского отдела этой выставки Яблочков принимал активнейшее участие. По назначению Французского правительства он был членом Международного жюри, изучавшего экспонаты и определявшего награды. Изобретения самого Яблочкова были объявлены «вне конкурса», что означало признание за ними неоспоримых достоинств.

Россия принимала на выставке и в Электротехническом конгрессе официальное участие. Русским правительством организация этого участия была поручена VI отделу Русского технического общества, устроившего на выставке особое «Русское отделение». В этом «Русском отделении» участвовало 26 русских частных экспонентов и 4 ведомства (в числе их морское и военное). На выставке был представлен только что начавший выходить журнал «Электричество». Одним из главных экспонентов был Петербургский завод «Яблочков-изобретатель и К°». В числе экспонентов были профессора Столетов, Боргман, Авенариус, Лермантов и др. Правительственным комиссаром отделения был один из пионеров русской электротехники проф. Лачинов, его заместителем — известный изобретатель, морской электрик Тверитинов.

В состав Международного жюри входили русские профессора А. Г. Столетов и Н. Г. Егоров.

Выставка 1881 г. имела решающее влияние на дальнейшую деятельность Яблочкова. Триумф лампы накаливания, в которой был использован принцип «накаливания проводника», возможность практического применения которого всегда оспаривал Яблочков, не мог не оказать на него своего влияния. Яблочков как бы потерял интерес к работам в области электрического освещения и, хотя его «свеча» продолжала широко применяться еще почти 10 лет, он совсем перестал работать над ее усовершенствованием; другие изобретатели эту работу продолжали, впрочем без особого успеха. Дальнейший прогресс дуговой лампы пошел по пути улучшения регуляторов, достигших скоро как в отношении простоты, так и надежности, большого совершенства. На этом пути большое значение имели труды другого русского пионера-электротехника, современника Яблочкова, Владимира Николаевича Чиколева. Позднее, для уменьшения расхода угольных электродов, стали заключать дугу в стеклянный баллон с малым доступом воздуха. Начали совершенствоваться и угли для электродов дуговых ламп, причем совершенствование пошло по пути, ранее указанному и использованному Яблочковым, по пути введения в состав углей окислов разных металлов для придания свету лампы различных цветных оттенков. Наконец, стали в определенных случаях заменять в лампах угольные электроды, один или оба, металлическими: танталовыми, железными, вольфрамовыми и даже ртутными в лампах с кварцевой оболочкой. Все эти усовершенствования значительно улучшили и расширили область применения дуговых ламп. Даже появление угольных ламп накаливания не оказало особого влияния на их распространение. Удар дуговым лампам нанесло появление мощных ламп накаливания с вольфрамовой проволокой в качестве калильного тела. Эти лампы, по экономичности оказавшиеся вполне сравнимыми с дуговыми, но гораздо более удобными в эксплоатации, почти всюду заменили дуговые лампы, оставив последние только для таких применений, как особо мощные прожекторы, светокопирование и т. п.{4}

Однако, всему этому развитию электрического освещения положила начало «свеча Яблочкова». Чтобы составить себе представление об ее распространении, достаточно сказать, что по свидетельству Яблочкова одно его Французское общество выручило за них к началу 90-х годов более 5 миллионов франков.

Нельзя не отметить, что изобретение лампы накаливания с вольфрамовой нитью, создавшее эпоху в истории освещения лампами накаливания, было сделано также русским пионером-электриком, тоже современником Яблочкова, Александром Николаевичем Лодыгиным, первым предложившим применить в качестве калильного тела разные металлы, в том числе и вольфрам.

В процессе улучшения дуговых ламп, которому Яблочков сам положил начало, он уже не принимал почти никакого участия. Он весь отдался изобретательству уже в других областях электротехники, в частности, в области электрических машин и гальванических элементов.

Известно, что еще раньше, чем заняться свечой, Яблочков изобрел электромагнит особой конструкции. Затем он принимал участие в разработке конструкции альтернатора Грамма. Занимался также конструкцией своих трансформаторов (индукционных катушек) и конденсаторов для своей системы «дробления света».

Теперь он вновь вернулся к построению электрических машин. В Петербурге на своем заводе он разработал новый тип динамомашины, которую продал впоследствии Французскому обществу. После возвращения в Париж он изобрел машину, проданную им в Англию. Полученные средства позволили Яблочкову покинуть службу во Французском обществе и целиком отдаться изобретательству. Из изобретенных им машин ни одна не получила распространения, хотя все они отличались оригинальностью и вообще были новы по идее. Основной причиной такого неуспеха было то, что Яблочков не имел в своем распоряжении ни завода, ни даже мастерских для постройки своих машин. Между тем теоретических сведений, которые могли бы послужить для расчета машин, тогда еще не было, и совершенствовать машину можно было только путем экспериментального исследования уже построенной машины. Итти по этому пути у Яблочкова не было возможности.

Машина, на которую Яблочков взял французскую привилегию в 1877 г., была машина переменного тока, которую он назвал «магнито-динамо-электрической». В этой машине он применил принцип, который впоследствии осуществлялся несколькими конструкторами (Клименко, Кингдон, Томпсон и др.). В машине не было подвижных обмоток: и намагничивающая обмотка и обмотка, в которой индуктировалась электродвижущая сила, оставались неподвижными. Вращался зубчатый железный диск, менявший при вращении магнитный поток, пронизывающий обмотку, в которой индуктировалась электродвижущая сила. При такой конструкции в машине не было никаких скользящих контактов и конструкция ее была достаточно проста.

Затем Яблочков построил и другую машину переменного тока. Конструировавшиеся в его время маломощные машины, приводимые в движение от трансмиссионных валов посредством ременных передач, устанавливались на сколько-нибудь мощной электростанции десятками и сильно мешали распространению электрического освещения; Яблочков поэтому занялся разработкой нового типа мощного генератора переменного тока.

Машина имела вращающиеся электромагниты (ротор), полюсы которых имели геликоидальную форму (фиг. 16). Статор был снабжен рядом обмоток, каждая достаточная для питания одной свечи. Вот, что пишет об этой машине обозреватель журнала «La Lumiere Electrique» Фр. Жеральди: «Одним из преимуществ своего индуктора (ротора) Яблочков считает то, что небольшому угловому движению соответствует значительное перемещение магнитного полюса, что дает возможность пользоваться меньшими скоростями». Машины Яблочкова строились фирмами Сотте-Лемонье и Бреге. Один из типов машин имел на статоре 32 катушки. «В данном случае, — пишет Жеральди, — замечается тенденция выйти на путь машин серьезных размеров, и это заслуживает полного внимания. Вместо того, чтобы комбинировать несколько небольших, почти игрушечных, машин, прибегая к сложным передачам и неудобным решениям, пришли, наконец, к тому, что стали строить машины, от которых, при их размерах, можно ждать превосходных результатов».

Оригинальной конструкцией отличается машина, которую Яблочков назвал «клиптической». «Основой в изобретенной мной машине, — пишет Яблочков во французской привилегии, — лежит расположение оси вращения под углом относительно оси магнитного поля; расположение, которое напоминает наклон эклиптики — отсюда имя, которое я даю машине» (фиг. 17). Этот электродвигатель был предназначен Яблочковым для работы на постоянном и на переменном токе. Трудно понять, чем руководствовался Яблочков, предлагая такую конструкцию машины. Можно только сказать, что в то время различными конструкторами предлагались разнообразные, иногда очень странные конструкции.

Яблочков изобрел еще ряд машин, в частности, легкий электродвигатель, генератор переменного тока с наклонными пазами и др., но все его изобретения в этой области по причинам уже сказанным применения не получили.

Интересно отметить, что Яблочков работал и над так называемыми электростатическими генераторами, над которыми последние годы много работали и работают современные нам электрики. Именно, в 1879 г. он взял французскую привилегию на машину для получения «переменного или выпрямленного тока, — говорится в привилегии, — при помощи статического электричества». Машина в общем состоит из ряда дисков с острыми зубцами по окружности, насаженными на вращающийся вал. Зубцы входят в соответствующие промежутки между рядом неподвижных дисков. Неподвижные диски получают электрический заряд; заряды, наводимые в подвижных дисках, непосредственно передаются во внешнюю цепь (фиг. 18). Повидимому, эта машина не была осуществлена.

От изобретательства в области машин Яблочков уже с 1880 г. отвлекся в совсем другую сторону.

Тогда, как и в настоящее время, многих электриков увлекала мысль получать электрическую энергию непосредственно за счет энергии химических превращений, избегая промежуточных превращений, как-то: сжигания топлива для получения механической энергии и последующего превращения ее, при помощи динамомашины, в электрическую. Примером электрических генераторов такого рода служили гальванические элементы или термоэлектрические батареи.

Яблочков тоже увлекся этой идеей и отдал изобретательству в этом направлении последний десяток лет своей жизни.

«С 1882 года, — пишет Павел Николаевич в своем автобиографическом очерке, — я начал работать над получением электричества посредством элементов, не пользуясь механической энергией, и я взял привилегию на элемент с натрием… В 1883 году я сильно заболел и должен был прервать свою работу, к которой я вернулся лишь в 1884 году. Именно тогда я создал свои автоаккумуляторы… С этого времени до конца 1889 года я продолжал работать… над производством электричества химическим путем. После этого я прекратил научные работы».

Идея получения электрической энергии непосредственно от элементов целиком завладела Яблочковым. Работу над осуществлением этой идеи он не прекращал до последних дней своей жизни. Работа была трудная, опасная для жизни и здоровья Павла Николаевича. Сопровождалась она событиями, принуждавшими Яблочкова менять место жительства и переживать трудные дни. Вот что пишет М. Н. Яблочкова об этом периоде его жизни: «Начиная с 1880 года и по 1889 год была самая деятельная эпоха работ Яблочкова. Можно было сказать, что он как бы торопился вылить в наглядные формы все, что имел в своей голове… Ушедши из «Общества», он начал работать самостоятельно. Напротив своей квартиры снял во дворе маленький павильон и, пригласив двух рабочих, стал производить опыты над элементом из натрия. Эта работа его поглощала настолько, что он как бы ушел из обыденной жизни. В своей лаборатории он устроил вытяжной шкаф и ставил там многочисленные типы элементов из амальгамы содия (натрия). Эти опыты представляли много опасности. Когда окислялся содий (натрий) и образовался «сод-каустик» (едкий натр), то содий загорался и так как в комнате было очень много содия и на всех столах были различной формы элементы, то нужно было оставаться все время и ночь и день, следя за опытами, так что мы чередовались. Он делал эти опыты в тайне. Был создан элемент грандиозной силы приблизительно в 40 паровых лошадиных сил. Мы находились в лаборатории и с интересом следили за усилением сил элемента. Как вдруг раздался громадный треск, окна были выбиты и комната наполнилась водородом, ничего не было видно и Павел Николаевич не слышал, когда я его звала. Водород выходил на улицу в большом количестве. Публика на улице приняла это за пожар, был дан сигнал пожарный. И вот, когда приехали пожарные, то была страшная минута. Я побежала на улицу, умоляя их не заливать водой, иначе был бы громадный взрыв, который мог бы разрушить весь дом. Хозяин дома, который был инженер, тоже выбежал на улицу и, к счастию, сумел убедить пожарных не заливать пожар. У нас был запас песку в две бочки и вот все стали засыпать… После этого взрыва нас попросили выехать с квартиры и мы взяли домик в окрестностях Парижа, в Курбевуа. Там во дворе была опять устроена лаборатория (фиг. 19), где можно было уже работать, не стесняясь соседями…

Более и дольше всего он работал над своими автоаккумуляторами. Когда опыты стали довольно удовлетворительными, то некоторые из наших друзей и знакомых вложили небольшие капиталы на продолжение этих опытов. Нужно было расширить помещение для этих опытов и мы переехали в особняк в Нейлли, где помещение было довольно большее… Париж стал приготовлять свою выставку 1889 г. Павел Николаевич занялся приготовлением Русского технического отдела. Вместе с тем он разрабатывал свои изобретения для демонстрации их на выставке. Чтобы быть ближе к работе на выставке, мы переехали в Париж на улицу Тери, где опять была устроена небольшая лаборатория… После окончания выставки Павел Николаевич, главным образом, работал над своими аккумуляторами и как бы торопился довесть их до конца».

К сожалению, до конца довести эти работы Яблочкову не удалось: тяжелая болезнь и смерть положили им конец. Неоконченные работы Яблочкова с элементами остались совсем забытыми. Повидимому, даже полученные им на разные типы элементов привилегии остались неиспользованными. Между тем идеи, которые клал Яблочков в основу своих изобретений, были интересны и оригинальны. Эти идеи явились впервые у Павла Николаевича еще в московский период его работы, когда ему приходилось иметь дело с обычными гальваническими элементами и на личном опыте испытывать их недостатки и неудобства, связанные с их эксплоатацией, В описаниях своих изобретений, прилагавшихся к заявлениям о выдаче привилегий, Яблочков часто упоминает об этих недостатках и стремится в своих изобретениях уничтожить их или, по крайней мере, ослабить.

Об изобретенных Яблочковым элементах делались доклады в академиях, писались статьи в журналах. О них говорилось в таких трудах, как специальный труд Казена, посвященный гальваническим элементам, или Томмази, посвященный электрохимии, где имя Яблочкова выставляется как пионерское. Варрен-Деларю в Лондоне повторял опыты с элементами, названными Яблочковым автоаккумуляторами, и получал хорошие результаты. Однако, все это не помогло успеху его изобретений. Они не были оценены современниками и обратили на себя внимание специалистов только в самое последнее время, когда выяснилось, что Яблочков более полувека тому назад высказывал и пытался реализовать те идеи, которые теперь в руках современных ученых получили надлежащее развитие.

«Все созданное Яблочковым в области гальванических элементов, — писал один из специалистов по электрохимии, — отличается необыкновенно богатым разнообразием принципов и конструктивных решений, свидетельствующих об исключительных интеллектуальных данных и выдающемся таланте изобретателя. Лишь в последнее десятилетие, когда снова пробудился интерес и внимание к гальваническим источникам электроэнергии, становится ясным, что многое предлагаемое современниками-исследователями этой области является воспроизведением замыслов, осознанных в свое время Яблочковым и уже использованных в ряде его изобретений. Гальванические элементы Яблочкова имели часто необычную для таких элементов форму. Например, один из элементов, на которые Яблочков взял французский патент в 1887 г., имел форму, изображенную на фиг. 20, взятую из подлинного патента.

Согласно описанию в тексте привилегии действие элемента основано на применении электродов, поляризация которых получается механическим способом с помощью вдувания газа под давлением и поглощения его веществом электродов, обладающим способностью конденсировать газ в своих порах. Элемент, изображенный под номером фиг.1, состоит из платинового, угольного или свинцового, электрода, имеющего форму чаши а, соединяющейся посредством трубки b и фланца i с газопроводной трубкой. Чаша заполняется или измельченным углем, или губчатым свинцом, или свинцовой амальгамой. Входное отверстие трубки b закрыто перфорированным экраном е. Чаша покрывается картонной или войлочной покрышкой d, на которую помещается пластина из пористого угля. Пластина эта плотно прижимается к покрышке d. По газопроводной трубе в чашу подается под давлением водород, который конденсируется в массе размельченного угля. Кислород окружающего воздуха конденсируется в порах угольной пластины с. Чаша а становится отрицательным полюсом, а верхняя угольная пластина — положительным полюсом элемента. На фиг. 20 под номером фиг.2 изображена другая конструкция того же элемента. Под номером фиг.3 изображен третий тип того же элемента.

В другом типе того же элемента водород под давлением подается в верхнюю половину, а кислород — в нижнюю. Каждый из газов конденсируется в пористой массе по ту или другую сторону войлочной прокладки. Другие элементы, предложенные Яблочковым, имеют весьма разнообразные формы, в которых различным образом осуществляется идея непосредственного использования кислорода для окислительного процесса.

Работами над гальваническими элементами закончилась изобретательская деятельность Яблочкова. Последняя полученная им привилегия была выдана во Франции в 1891 г. и имела предметом один из последних предложенных Яблочковым гальванических элементов. В дальнейшем хотя Яблочков продолжал работать над усовершенствованием элементов вплоть до самой смерти, новых результатов он не получал.

Начало последнего периода жизни и деятельности Яблочкова связано с началом подготовки к Парижской всемирной выставке 1889 г. На этой выставке Павел Николаевич был по поручению Русского технического общества организатором Русского отдела выставки. Лихорадочная деятельность по подготовке к выставке, связанная вдобавок с многочисленными общественными обязанностями, очень утомляла Яблочкова. Работая над организацией Русского отдела выставки, Яблочков одновременно должен был готовить для выставки и свои экспонаты. Это был 1889 г. Лампы Эдисона уже завоевали себе очень прочное положение. Появились и хорошие дуговые регуляторы. Однако, и «свеча Яблочкова» еще имела довольно широкое применение, в частности, на самой выставке. Были другие изобретения, которые хотел показать миру Павел Николаевич. По своему характеру и темпераменту Павел Николаевич не мог относиться хладнокровно ко всем инцидентам, неизбежно связанным с выставочной работой. Он волновался, нервничал и даже тот факт, что Русский отдел, в числе весьма немногих, был готов ко дню открытия выставки, не успокоил Павла Николаевича. Он продолжал волноваться, теряя сон и необходимое при его здоровье спокойствие.

Вот что пишет об этом периоде деятельности Павла Николаевича его жена, М. Н. Яблочкова: «Париж стал приготовлять свою выставку на 1889 год. Павел Николаевич занялся приготовлением Русского Отдела и вместе с тем разрабатывал свои изобретения для их демонстрации на выставке. Материальные средства наши в то время были уже очень маленькие. Павел Николаевич приглашал массу русских к себе обедать и завтракать. Опять наш дом превратился в какой-то ресторан… После окончания Выставки он более года работал, но силы и работоспособность уменьшились. Он отдавал себе в том отчет, но меня не хотел пугать. Жизнь стала очень тяжелая в материальном отношении потому, что, хотя опыты все время продолжались, но больших результатов не получалось, а главное, Павел Николаевич все же, главным образом, работал над своими аккумуляторами и как бы торопился довести их до конца. Работая с хлором, он сжег себе (как говорят доктора) слизистую оболочку легких, в силу чего он стал задыхаться. Потом стали пухнуть ноги. Нравственно он тоже переменился. У него явилась тоска по родине и он стал меня уговаривать вернуться в Россию».

Мечты о возвращении в Россию оставались пока мечтами, и Яблочков, несмотря на болезнь, все еще продолжал работать. Он, как пишет его жена, «сильно верил в конечный, практический результат его изобретения и, таким образом, могли поправиться наши дела и мы могли бы уплатить тем, кто давал нам деньги на опыты и даже на жизнь». Но болезнь прогрессировала. Опыты с хлором, которые так губительно отозвались на здоровье Яблочкова, были опыты с гальваническими элементами и опыты над обесцвечиванием желтых капских бриллиантов. О том, как начались эти последние опыты, рассказывает М. Н. Яблочкова: «На Выставке (Парижская 1889 г.) Павел Николаевич познакомился с одним бриллиантщиком из Голландии. При разговоре о драгоценностях бриллиантщик стал говорить о разности цены белых и желтых капских бриллиантов и о том, что если бы удалось обелить желтые бриллианты, то такое изобретение могло бы обогатить изобретателя».

Яблочков, с его изобретательским темпераментом, вдобавок очень нуждавшийся в средствах для своих основных работ, горячо заинтересовался этим вопросом и стал производить опыты обесцвечивания. Работал он с хлором при высоких температурах. На его и без того больной организм эта работа подействовала губительно. Работать становилось все труднее и труднее. Опять явилась мысль уехать в Россию, на Кавказ и там, в обстановке южной природы, создать себе условия, в которых он мог бы жить и свободно работать. Но мечте этой не суждено было сбыться. В Россию, правда, Яблочков уехал, оставив жену временно в Париже, но в Петербурге заболел и должен был остановиться. Вот как описывает приехавшая к мужу Мария Николаевна Яблочкова последние месяцы жизни великого изобретателя:

«В Петербурге здоровье Павла Николаевича стало еще хуже. Он очень мучился кашлем и просил меня приехать. Приехавши в Петербург (июль 1893 г.), я нашла Павла Николаевича очень изменившимся, хотя не видела его всего три месяца. Через несколько дней мы уехали в деревню, но в имении даже не было дома, который давно сгорел… мы поселились в доме, который был заброшен и негоден для зимнего жилья. Настала осень. Здоровье Павла Николаевича ухудшалось, и в начале зимы мы уехали в Саратов. В Саратове мы поселились в гостинице «Континенталь» в одной комнате, так как Павел Николаевич не мог оставаться один. Это был самый трагический период в нашей жизни. Открылась водянка… Он не мог ходить».

Но потребность в творческой работе не покидала и больного Яблочкова.

«Около дивана, на котором он лежал, ему поставили большой стол и вот на этом столе он устроил себе целую лабораторию, все время говоря, что он скоро окончит свои опыты и будет миллионер… Он почти не спал и по старой привычке ночью работал за своим лабораторным столом… Болезнь усиливалась… Павел Николаевич стал задыхаться и 19 марта (ст. ст.) 1894 года в 6 час. утра он помер».

Последними словами умирающего были: «И там тяжело, и здесь не легко».

Так окончил жизнь в номере провинциальной гостиницы всеми покинутый крупнейший изобретатель и один из крупнейших в мире пионеров электротехники.

До последних часов своей жизни трудился великий изобретатель над своими изобретениями и умер неудовлетворенный. Его главное изобретение, давшее ему мировую славу, «свеча», к тому времени почти утратила свое значение. Работа с гальваническими элементами, на которую до последних часов своей жизни он возлагал много надежд, осталась незаконченной.

Но остались после Яблочкова работы и изобретения, которые никогда не утратят своего значения, — это введение в жизнь переменных токов и изобретение трансформаторов переменного тока. На эти именно изобретения современники Яблочкова обращали меньше всего внимания и сам он как бы потерял к ним интерес. Но, несомненно, эти изобретения вместе, со свечой были основными изобретениями Павла Николаевича.

Яблочков при жизни имел много принципиальных противников, но и они признавали исключительное значение его изобретений для прогресса электротехники.

«Я не принадлежу, — пишет В. Н. Чиколев, — к числу лиц, которые видят в электрической свече совершенство, далее которого нечего искать, и я считаю, что главнейшая заслуга Яблочкова не в изобретении его свечи, а в том, что под знаменем этой свечи он с неугасимой энергией, настойчивостью, последовательностью поднял за уши электрическое освещение и поставил его на подобающий пьедестал. Если затем электрическое освещение получило кредит в обществе, если прогресс его, поддерживаемый доверием и средствами публики, пошел затем столь гигантскими шагами, если на усовершенствование этого освещения устремились мысли работников, между которыми фигурируют знаменитые имена Сименса, Жамена, Эдисона и др., то всем этим мир обязан нашему соотечественнику Яблочкову».

Это не некролог, не речь над гробом, а слова, написанные еще в 1880 г. одним из самых яростных принципиальных противников свечи и применения переменного тока.

Но не одной свечой мы обязаны Яблочкову. Он сделал больше. Он первый в мире дал практическое решение проблемы «дробления света», которого искали все его современники, и дал систему распределения между рядом приемников тока, получаемого от одного источника, систему, основанную на применении переменного тока и изобретенных им трансформаторов, т. е. систему, по идее ту, которой мы пользуемся до настоящего времени.

Далеко не все изобретения Яблочкова были оценены его современниками; может быть, это объясняется тем, что современная Яблочкову техника не была готова к освоению его многих очень передовых мыслей.

Целый ряд вопросов, научных и технических, которыми мы занимаемся еще в настоящее время или которые решены сравнительно недавно, был впервые поднят Яблочковым. Таковы, например, вопросы о влиянии индукции и емкости в цепях переменного тока (резонанс токов и напряжений), вопросы по теории гальванических элементов и т. п., вплоть до вопроса о влиянии проводов, по которым идет переменный ток, на соседние провода связи. Яблочков, конечно, не решил многих из этих вопросов и, при состоянии науки в его время, вряд ли и мог решить, но самая постановка этих вопросов характеризует глубину ума Яблочкова. К сожалению, о различных работах Яблочкова знают далеко не все, даже электротехники. «Для большинства, — как пишет один из его французских биографов. — Яблочков остался человеком свечи. Ни одна из его дальнейших работ не привлекла должного внимания». Мы и теперь знаем далеко не все о работах Яблочкова. Много бумаг, записок и заметок Яблочкова пропало бесследно, и о многих его начинаниях сохранилось только предание. Так, в конце 80-х и начале 90-х годов Павел Николаевич стал очень интересоваться воздухоплаванием, механической тягой на обычных дорогах (взял даже привилегию на электромобиль) и другими подобными вопросами. В одном из заседаний Французского общества гражданских инженеров он заявил, что оставил работу над электрическим освещением, а занялся работой над «производством силы». Вероятно, он имел в виду работы, связанные с использованием изобретавшихся им гальванических элементов. Болезнь помешала дальнейшему продвижению этих работ, от которых мы, быть может, могли бы получить многое.

Но то, что Яблочков сделал, уже совершенно достаточно для того, чтобы имя его было внесено в список тех мировых изобретателей, которые своими трудами положили начало целым областям техники..

При жизни Яблочкова его заслуги были отмечены только двумя русскими научными обществами и Французским правительством.

Русское техническое общество присудило ему в 1879 г. почетную медаль Общества с надписью: «Достойнейшему Павлу Николаевичу Яблочкову».

Общество любителей естествознания, антропологии и этнографии при Московском университете, действительным членом которого он был с самого начала своей изобретательской карьеры, в 1889 г. избрало Павла Николаевича своим почетным членом.

Наконец, Французское правительство наградило «русского инженера Яблочкова», как сказано в орденском дипломе, орденом Почетного Легиона.

Была, правда, и у нас сделана еще одна попытка отметить заслуги Яблочкова.

На Первом всероссийском электротехническом съезде, происходившем в Петербурге в 1899–1900 гг., было сделано предложение, как напечатано в Трудах съезда, «почтить память великого русского электротехника, Павла Николаевича Яблочкова основанием среднего электротехнического училища». На Съезде была собрана небольшая сума денег, избрана комиссия для выполнения пожелания Съезда, но далее дело не пошло. Школу открыть не удалось.

Настоящую оценку деятельность Яблочкова получила только при Советской власти.

Уже в 1926 г., в связи с 50-летием изобретения свечи, основанный Яблочковым VI отдел Русского технического общества устроил торжественное заседание в память Яблочкова. Сохранившаяся повестка гласит: «В воскресенье 12 декабря в 2 часа дня в помещении Русского технического общества (ул. Пестеля, 2) состоится собрание VI электротехнического отдела Русского технического общества, посвященное 50-летию изобретения свечи Яблочкова».

На заседании были сделаны доклады М. А. Шателена, А. А. Воронова и др., посвященные изобретениям Яблочкова в области светотехники, электрических машин и гальванических элементов. Журнал «Электричество» выпустил специальный номер, посвященный памяти одного из своих основателей со статьями, характеризующими разностороннюю деятельность Яблочкова.

Гораздо более значительными мероприятиями было отмечено 100-летие со дня рождения Яблочкова: в Москве (в сентябре 1947 г.) состоялось торжественное заседание, организованное Академией наук СССР и Всесоюзным научным инженерно-техническим обществом энергетиков, посвященное памяти Яблочкова, на котором выступали с докладами проф. Шателен, проф. Белькинд и на котором присутствовали родственники Яблочкова. Подобные собрания были организованы и в других городах Советского Союза.

Советское правительство отметило 100-летие рождения знаменитого изобретателя рядом мероприятий чрезвычайного значения, постановив:

1. Присвоить имя П. Н. Яблочкова:

а) Саратовскому электромеханическому техникуму Министерства промышленности средств связи;

б) Московскому светотехническому заводу Министерства электропромышленности.

2. Соорудить памятник П. Н. Яблочкову в 1949 г. в г. Саратове.

3. Учредить премию имени П. Н. Яблочкова в размере двадцати тыс. рублей, присуждаемую Президиумом Академии наук СССР один раз в 3 года за лучшее сочинение по электротехнике и светотехнике.

4. Установить стипендии имени П. Н. Яблочкова для студентов:

а) в Московском энергетическом институте имени В. М. Молотова — две стипендии по 400 рублей в месяц каждая;

б) В Ленинградском политехническом институте им. М. И. Калинина — две стипендии по 400 рублей в месяц каждая;

в) в Ленинградском электротехническом институте им. В. И. Ульянова (Ленина) — одну стипендию в размере 400 рублей в месяц;

г) в Саратовском электромеханическом техникуме — три стипендии по 300 рублей в месяц каждая.

5. Обязать Академию наук СССР издать в 1948–1951 г.:

а) труды, важнейшие патенты, документы и другие материалы, характеризующие жизнь и деятельность П. Н. Яблочкова;

б) научно-популярную книгу о жизни и деятельности П. Н. Яблочкова.

6. Обязать Саратовский Областной и Городской Советы:

а) переименовать одну из улиц г. Саратова в улицу имени Яблочкова;

б) установить мемориальную доску на здании бывшей Саратовской Первой мужской гимназии по Некрасовской улице, где учился П. Н. Яблочков;

в) привести в порядок могилу П. Н. Яблочкова в с. Сапожек, Ртищеского района, Саратовской области, и установить на могиле надгробную плиту.

Таким образом вполне оправдались пророческие слова Павла Николаевича, что его труды «оценят через сто лет». Действительно, работа Яблочкова была оценена и достойно отмечена на его родине ровно через 100 лет после его рождения.


Примечания:



12

См. Ефремов и Радовский, Динамомашина в ее историческом развитии, 1934 г.



13

Герман Лопатин в дальнейшем проживал некоторое время в Москве по чужому паспорту и работал в качестве помощника присяжного поверенного (адвоката). Он устроил в Москве финансовые дела Яблочкова и ликвидировал последствия банкротства, бывшего одной из причин отъезда его за границу, и таким образом сделал возможным возвращение Яблочкова в Россию.



14

Термины «сила тока, «напряжение и др. в то время не имели еще ясного определения и применялись различными авторами в различном смысле.



15

Естественными источниками электричества Яблочков называет атмосферное электричество во всех его проявлениях.



16

Машина Аллианс была одной из первых машин переменного тока с постоянными магнитами, получивших некоторые применения.



17

Т. е. соединяя ее обмотки так, чтобы она давала наибольшее напряжение.



18

Т. е. свеча, весящая 1/4 фунта (4 свечи в 1 фунтовой пачке).



19

Впервые покрытие углей слоем меди было предложено современником Яблочкова, Н. П. Булыгиным.



20

Общество «L'Eclairage Electrique» (Электрическое освещение) было собственником привилегии Яблочкова на трансформаторы.



21

По сообщению Фонтена при цене, которую платил Парижский муниципалитет, Общество теряло ежедневно 100 франков.







 


Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх