|
||||
|
5. Распределение случайных величин Затрагивая вопрос о вероятности некоторого события, нельзя не говорить о закономерностях появления случайных величин. Чтобы упростить ситуацию, эти величины делят на: 1) прерывные (дискретные) – например, количество некоторой продукции, не отвечающее установленным стандартам; 2) непрерывные – например, единицы той же продукции, которые имеют неодинаковые параметры, но эти параметры находятся в пределах границ предельно допустимого. Зависимость между возможными значениями случайных величин и их вероятностями, выраженными конкретным способом, называется законом распределения случайных величин. Для того, чтобы установить математическую форму этого закона, предположим, что дискретная случайная величина х может принимать значения х1, x2, x3…, хi…., xk, и пусть каждому из этих значений соответствует вероятность Px. Тогда ряд вероятностей, соответствующих значениям случайной величины х, будет иметь следующий вид Px,Px1,Px2,…,Pxi,…,Pxk. Очевидно, что вероятность Px является некоторой функцией от переменной х и имеет вид: Px = f(х), где x = xi, i = 1, 2…, k. Рассмотрим поведение этой функции для вышеприведенных двух видов случайных величин. 1. Случайная величина – дискретная (прерывная). Случайная величина х < х', где х < х' задано, может выражаться следующим образом: Функция F(х)=F(х') называется функцией распределения случайной прерывной величины ч. 2. Случайная величина – непрерывна. Плотностью вероятности Px в точке X = х называется предел вида Следовательно, функцию F(х') можно дифференцировать, тогда F (х)=f (х) Основные свойства функции распределения следующие: 1) х = ?;F(?)= 1; 2) х = —?;F(?) = 0; 3) если аргумент x возрастает, т. е. если рассмотреть случай х2 > х1, то F(x2) > F(x1). Если рассмотреть ?F(х)=F(х2)-F (х1) то |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх |
||||
|