|
||||
|
10. Биноминальный и полиноминальный законы распределения. Равновероятное распределение. Закон распределения эксцентриситета 1. Биноминальный закон распределения. Этот закон математически выражается формулой разложения бинома (q + p)2 в следующем виде где n! – читается как n-факториал, Cnm – биноминальный коэффициент, выражающий количество сочетаний из n элементов по m, причем, n – положительное целое число. 2. Полиномиальный закон распределения (П/З/Р). В предыдущем случае рассмотрено два исхода появления случайного события А: или оно появится с вероятностью р, или не появится с вероятностью q = 1 – p. Когда количество независимых испытаний равно n, то велика вероятность того, что каждое событие Vi произойдет n раз, где i =1, 2,..., k. Причем определяется формулой В виде формулы (58) получен искомый полиномиальный полиноминальный закон распределения. 3. Равновероятное распределение. Рассматривая вышеприведенные законы распределения случайной величины, пришлось подчеркнуть различия в их проявлении при условиях: прерывно ли распределение случайных величин или непрерывно? Другое название этого закона – равномерное, или прямоугольное распределение, несет в себе больше информации о кривой этого закона. Вероятность наступления случайного события А на рассматриваемом промежутке одинакова в любой точке из промежутка[в; с]. Для Р/Р плотность где в, с – параметры З/Р/Р. Функция распределения для З/Р/Р имеет вид: |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх |
||||
|