|
||||
|
35. Уравнение Бернулли для неустановившегося движения вязкой жидкости Для того, чтобы получить уравнение Бернулли, придется определить его для элементарной струйки при неустановившемся движении вязкой жидкости, а затем распространять его на весь поток Прежде всего, вспомним основное отличие неустановившегося движения от установившегося. Если в первом случае в любой точке потока местные скорости изменяются по времени, то во втором случае таких изменений нет. Приводим уравнение Бернулли для элементарной струйки без вывода: здесь учтено, что ?? = Q; ?Q = m; m? = (КД)?. Так же, как и в случае с удельной кинетической энергией, считать (КД)? не таккто просто. Чтобы считать, нужно связать его с (КД)?. Для этого служит коэффициент количества движения Коэффициент a? принято называть еще и коэффициентом Бусинеска. С учетом a?, средний инерционный напор по живому сечению Окончательно уравнение Бернулли для потока, получение которого и являлось задачей рассматриваемого вопроса имеет следующий вид: Что касается (5), то оно получено из (4) с учетом того, что dQ = wdu; подставив dQ в (4) и сократив ?, приходим к (6). Отличие hин от hпр прежде всего в том, что оно не является необратимым. Если движение жидкости с ускорением, что значит d?/t > 0, то hин > 0. Если движение замедленное, то есть du/t < 0, то hин < 0. Уравнение (5) связывает параметры потока только в данный момент времени. Для другого момента оно может уже оказаться не достоверным. |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх |
||||
|