30. Геометрический смысл уравнения Бернулли

Основу теоретической части такой интерпретации составляет гидравлическое понятие напор, которое принято обозначать буквой Н, где


Гидродинамический напор Н состоит из следующих разновидностей напоров, которые входят в формулу (198) как слагаемые:

1) пьезометрический напор, если в (198) p = pизг, или гидростатический, если p ? pизг;

2) U2/2g – скоростной напор.

Все слагаемые имеют линейную размерность, их можно считать высотами. Назовем эти высоты:

1) z – геометрическая высота, или высота по положению;

2) p/?g – высота, соответствующая давлению p;

3) U2/2g – скоростная высота, соответствующая скорости.

Геометрическое место концов высоты Н соответствует некоторой горизонтальной линии, которую принято называть напорной линией или линией удельной энергии.

Точно так же (по аналогии) геометрические места концов пьезометрического напора принято называть пьезометрической линией. Напорная и пьезометрическая линии расположены друг от друга на расстоянии (высоте) pатм/?g, поскольку p = pизг + pат, т. е.

Отметим, что горизонтальная плоскость, содержащая напорную линию и находящаяся над плоскостью сравнения, называется напорной плоскостью. Характеристику плоскости при разных движениях называют пьезометрическим уклоном Jп, который показывает, как изменяется на единице длины пьезометрический напор (или пьезометрическая линия):


Пьезометрический уклон считается положительным, если он по течению струйки (или потока) уменьшается, отсюда и знак минус в формуле (3) перед дифференциалом. Чтобы Jп остался положительным, должно выполняться условие







 


Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх