29. Энергетический смысл уравнения Бернулли

Пусть теперь имеем установившееся движение жидкости, которая невязкая, несжимаемая.

И пусть она находится под воздействием сил тяжести и давления, тогда уравнение Бернулли имеет вид:

Теперь требуется идентифицировать каждое из слагаемых. Потенциальная энергия положения Z – это высота элементарной струйки над горизонтальной плоскостью сравнения. Жидкость с массой М на высоте Z от плоскости сравнения имеет некоторую потенциальную энергию MgZ. Тогда


Это та же потенциальная энергия, отнесенная к единичной массе. Поэтому Z называют удельной потенциальной энергией положения.

Движущаяся частица с массой Ми скоростью u имеет вес MG и кинематическую энергию U2/2g. Если соотнести кинематическую энергию с единичной массой, то


Полученное выражение есть не что иное, как последнее, третье слагаемое в уравнении Бернулли. Следовательно, U2/ 2 – это удельная кинетическая энергия струйки. Таким образом, общий энергетический смысл уравнения Бернулли таков: уравнение Бернулли представляет собой сумму, содержащую в себе полную удельную энергию сечения жидкости в потоке:

1) если полная энергия соотнесена с единичной массой, то она есть сумма gz + p/? + U2/ 2;

2) если полная энергия соотнесена с единичным объемом, то ?gz + p + pU2/ 2;

3) если полная энергия соотнесена единичному весу, то полная энергия есть сумма z + p/?g + U2/ 2g. Не следует забывать, что удельная энергия определяется относительно плоскости сравнения: эта плоскость выбирается произвольно и горизонтально. Для любой пары точек, произвольно выбранной из потока, в котором установившееся движение и который движется потенциальноовихрево, а жидкость невязко-несжимаемая, суммарная и удельная энергия одинаковы, то есть распределены по потоку равномерно.







 


Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх