• 7. Бомбардировка Земли
  • 8. Замедление вращения Земли
  • 9. Дрейф земной коры
  • 10. Изменение погоды
  • 11. Перемещение магнетизма
  • Часть третья

    Катастрофы третьего класса

    7. Бомбардировка Земли

    Внеземные объекты

    При обсуждении вторжения в Солнечную систему объектов из межзвездного пространства я концентрировал внимание на возможности воздействия таких объектов на Солнце, поскольку любое грубое вмешательство в целостность Солнца или изменение его свойств связано с наличием катастрофического эффекта для нас.

    Сама Земля еще более чувствительна к подобным злоключениям, чем Солнце. Межзвездный объект, пересекающий Солнечную систему, может быть слишком мал, чтобы значительно воздействовать на Солнце, исключая прямое столкновение, а иногда даже в этом случае. Однако если такой объект окажется по соседству с Землей или столкнется с ней, он может вызвать катастрофу.

    И теперь надо рассмотреть катастрофы третьего класса, то есть те возможные события, которые повлияют в первую очередь на Землю и сделают ее необитаемой, хотя Вселенная и даже остальная часть Солнечной системы останутся нетронутыми.

    Рассмотрим, например, случай вторжения мини-черной дыры сравнительно большого размера, скажем, с массой, сопоставимой с массой Земли. Подобный объект, если он минует Солнце, не причинит ему никакого вреда, хотя сам, вероятно, под влиянием гравитационного поля Солнца радикально изменит орбиту (Он может даже (хотя это невероятно) быть захвачен Солнцем и выйти на постоянную орбиту вокруг него. Эта орбита, вероятно, будет крайне склонна к эклиптике и крайне эксцентрична. К счастью, он ощутимо не беспокоил бы другие тела Солнечной системы, включая Землю, хотя стал бы и оставался наиболее неудобным соседом. Тем не менее очень маловероятно, что крупная мини-черная дыра является членом Солнечной системы. Даже незначительное воздействие ее гравитационного поля было бы замечено, кроме случая, когда она находилась бы далеко за орбитой Плутона.

    Если бы подобный объект проскользнул мимо Земли, он бы, тем не менее, мог произвести бедственные действия только за счет влияния на нас его гравитационного поля.

    Поскольку сила гравитационного поля зависит от расстояния, та сторона Земли, которая обращена в сторону вторгнувшегося тела, будет притягиваться сильнее, чем противоположная. Земля до некоторой степени вытянется в сторону вторженца. В особенности вытянутся податливые воды океана. Океан будет горбиться на противоположных сторонах Земли в направлении вторгнувшегося объекта и прочь от него, и при вращении Земли континенты будут проходить сквозь эти горбы. Дважды в день море будет выходить на континентальные берега, а потом снова отступать.

    Наступление и отступление моря (приливы и отливы) практически происходят на Земле в результате гравитационного влияния Луны и в меньшей степени Солнца. Поэтому все эффекты, вызываемые различием гравитационного влияния на тело, называются «приливо-отливными» эффектами.

    Чем больше масса вторгнувшегося тела и чем ближе оно к Земле, тем сильнее приливо-отливные эффекты. Если вторгшаяся мини-черная дыра будет достаточно массивна и пройдет мимо Земли достаточно близко, она может вмешаться в целостность планетарной структуры, вызвать трещины в ее коре и так далее. Прямое столкновение было бы, разумеется, катастрофическим.

    Вероятность существования такого большого размера мини-черной дыры чрезвычайно мала, тем не менее, если бы она даже существовала, следует помнить о том, что Земля — гораздо меньшая цель, чем Солнце. Поперечное сечение Земли составляет только двенадцать тысячных поперечного сечения Солнца, так что даже самая малая вероятность близкой встречи между таким объектом и Солнцем должна быть соответственно уменьшена для вероятности его близкой встречи с Землей.

    Мини-черные дыры, если они существуют, вероятнее всего, были бы астероидного размера. Мини-черная дыра с массой, скажем, в одну миллионную массы Земли, не представит серьезной опасности при близкой встрече. Она вызовет незначительные приливо-отливные эффекты, и мы вполне можем не заметить подобного события, если оно произойдет.

    Иное дело при прямом попадании. Мини-черная дыра, какой бы малой она ни была, «проест» себе туннель в теле Земли. Она, конечно, будет поглощать материю, и энергия, выделяемая в процессе, будет плавить и испарять вещество перед ней по пути ее продвижения. Она пройдет толщу Земли по кривой (не обязательно через центр) и выйдет из Земли, чтобы продолжить в космосе свою, уже измененную гравитационной силой Земли траекторию. На выходе она станет более массивной, чем была на входе. И двигаться она будет медленнее, поскольку при прохождении сквозь газы испаряющегося вещества Земли она встретится с определенным сопротивлением.

    Тело Земли вылечит себя после прохода сквозь него мини-черной дыры. Пары охладятся и затвердеют, внутреннее давление закроет туннель. Эффект на поверхности будет все же опустошительным (впрочем, возможно, и не вполне катастрофическим), примерно таким, как от огромного взрыва, собственно, даже двух: одного — в месте, где мини-черная дыра вошла в Землю, другого — там, где она вышла.

    Естественно, чем меньше мини-черная дыра, тем меньше и эффекты. Но в одном отношении маленькая дыра может быть хуже, чем большая. У маленькой мини-черной дыры и момент силы довольно мал благодаря малой массе. И если к тому же дыра будет двигаться с низкой скоростью по отношению к Земле, то замедление в процессе «проедания» может оказаться достаточным для того, чтобы она не смогла проделать себе путь на выход. Гравитация Земли окажется для нее ловушкой. Дыра станет падать в направлении к центру, промахнется, снова станет падать, снова промахнется и так далее, снова и снова.

    Из-за вращения Земли дыра не будет ходить туда и сюда по одному и тому же пути, но будет выписывать кривые, по рисунку и общей сложности напоминающие пчелиные соты, неуклонно вырастая, как это ей присуще, на каждом отрезке. В конечном счете она обоснуется в центре, оставив вокруг себя изрешеченную Землю с опустошенным центром. И эта центральная дыра продолжит медленно расти. Земля таким образом будет так ослаблена в структурном отношении, что погибнет; вся материя направится в центральную черную дыру, и в конце концов вся планета будет поглощена.

    Итоговая черная дыра с массой Земли продолжит движение по земной орбите вокруг Солнца. Для Солнца и других планет такое превращение не составит никакой гравитационной разницы. Даже Луна продолжит кружить вокруг крошечного объекта в 2 сантиметра в поперечнике, как если бы это была Земля в своей полной величине, каковой она в отношении массы и останется.

    Для нас это был бы конец света — катастрофа третьего класса. И (теоретически) она может произойти хоть завтра.

    Так же и кусок антиматерии, слишком малый для того, чтобы существенно повлиять на Солнце, даже если произойдет прямое столкновение, может быть достаточно большим, чтобы вызвать значительное опустошение на Земле. В отличие от черной дыры антиматерия, если кусок ее по массе с астероид или меньше, не пробьет туннеля сквозь планету. Тем не менее он выбьет такой кратер, который, в зависимости от размера тела, может поглотить целый город или континент. Глыбы обычного вещества из межзвездного пространства, разнообразие которых нам знакомо, естественно, причинят гораздо меньше вреда.

    От этих катастроф вторжения Земля защищена двумя обстоятельствами:

    1. Что касается мини-черных дыр и антиматерии, мы на самом деле не знаем точно, существуют ли вообще такого вида объекты.

    2. Если эти объекты действительно существуют, то космос настолько велик по объему, а Земля представляет собой такую маленькую мишень, что нужно какое-то чрезвычайное стечение обстоятельств, чтобы попасть в Землю или хотя бы подойти к ней близко. Это, конечно, верно также и для объектов, состоящих из обычной материи.

    Значит, мы можем исключить вторженцев из межзвездного пространства, внушительного размера вторженцев, как не представляющих ощутимой опасности для Земли (Говоря «внушительного размера», я намеренно опускаю возможность столкновения с Землей частиц пыли из межзвездного пространства или отдельных атомов, или субатомных частиц. Я рассмотрю это позднее).

    Кометы

    Чтобы найти ракеты, которые могут попасть в Землю, нет надобности искать вторженцев из межзвездного пространства. В самой Солнечной системе существуют подходящие для этого объекты.

    Приблизительно с 1800 года, благодаря работам французского астронома Пьера Симона Лапласа (1749–1827), хорошо известно, что Солнечная система является стабильной структурой при условии, что она предоставлена самой себе. (И она была, насколько мы знаем, предоставлена самой себе на протяжении 5 миллиардов лет и будет предоставлена самой себе, насколько мы можем судить, еще в течение неопределенно длительного времени.) Например, Земля не может упасть на Солнце. Для того чтобы это произошло, ей надо избавиться от своего огромного запаса углового момента кругового вращения. Этот запас не может быть уничтожен, он может быть только передан, а мы не знаем способа внезапного вторжения из межзвездного пространства тела размером с нашу планету, которое могло бы поглотить угловой момент Земли, оставив Землю неподвижной и, следовательно, способной упасть на Солнце.

    По этой же причине никакая другая планета не может упасть на Солнце, и никакой спутник не может упасть на свою планету, и, в частности, Луна не может упасть на Землю. И планеты не могут настолько изменить свои орбиты, что столкнутся друг с другом (Правда, русский по происхождению психиатр Иммануил Великовский в своей книге «Столкновение миров» (Worlds in Collision), опубликованной в 1952 году, постулирует ситуацию, в которой планета Венера была извергнута из Юпитера около 1500 года до н. э. и затем несколько раз столкнулась с Землей, прежде чем водворилась на свою нынешнюю орбиту. Великовский описывает бедственные события, сопровождавшие эти столкновения, которые, тем не менее, по-видимому, не оставили следа на Земле, если не считать неясных мифов и сказок, выборочно цитируемых Великовским. Идеи Великовского с уверенностью могут быть отвергнуты как фантазии активного воображения, обращенные к людям, которые знакомы с астрономией не более, чем сам Великовский.).

    Солнечная система, конечно, не всегда была в таком порядке, как сейчас. Когда формировались планеты, облако пыли и газа в окрестностях растущего Солнца конденсировалось во фрагменты различных размеров. Более крупные фрагменты росли за счет более мелких, пока не сформировались большие объекты планетарных размеров. Однако остались более мелкие фрагменты, все же значительных размеров. Некоторые из них стали спутниками, вращающимися вокруг планет по траекториям, которые стали стабильными орбитами. Другие столкнулись с планетами или спутниками и добавили к ним свои кусочки массы.

    Мы можем видеть следы финальных столкновений, например, с помощью хорошего бинокля. На Луне существует 30 000 кратеров размером от 1 километра в поперечнике до 200 с лишним. Каждый — след столкновения с ускоренным куском материи.

    Исследовательские ракеты показали нам поверхности других миров, мы обнаружили кратеры на Марсе и на обоих его маленьких спутниках — Фобосе и Деймосе, а также на Меркурии. Поверхность Венеры скрыта облаками, ее трудно исследовать, но, несомненно, там тоже есть кратеры. Существуют кратеры даже на Ганимеде и Каллисто — двух спутниках Юпитера. Почему же тогда нет кратеров от бомбардировки на Земле?

    О, они существуют! Или, правильнее, существовали. Земля обладает свойствами, которых нет у других миров. Она имеет активную атмосферу, которой нет у Луны, Меркурия и спутников Юпитера и которой лишь в очень малой степени обладает Марс. У Земли есть объемистый океан, не говоря обо льде, дождях и текучей воде, а этого и в помине нет ни на каком другом объекте; впрочем, есть лед и, может быть, когда-то была и текучая вода на Марсе. И, наконец, на Земле есть жизнь, нечто, по всей видимости, уникальное в Солнечной системе. Ветер, вода и жизнедеятельность — все это способствует эрозии поверхности, и, поскольку кратеры образовались миллиарды лет назад, они стерты теперь с лица Земли (На недавних фотографиях Ио, самого крупного из наиболее близких к Юпитеру спутников, видно, что там нет кратеров. В данном случае причина в том, что Ио — спутник активно-вулканический и кратеры заполнены лавой и пеплом).

    В течение первого миллиарда лет после образования Солнца различные планеты и спутники вычистили как следует свои орбиты и приняли свой настоящий вид. И все же Солнечная система не совсем чиста и сейчас. Осталось то, что мы называем планетарными осколками, — маленькие объекты, вращающиеся вокруг Солнца, которые слишком малы, чтобы быть солидной планетой, и которые все же способны принести значительный ущерб, если они когда-нибудь столкнутся с большим телом. Например, существуют кометы.

    Кометы — это неясные, смутно светящиеся объекты, имеющие иногда неправильную форму. Их видят в небе с тех самых времен, когда люди обратили свой взгляд на небо, но их природа до последнего времени была неизвестна. Греческие астрономы считали их атмосферными явлениями и горящими высоко в воздухе испарениями (Из-за того, что кометы появлялись неожиданно, не подчиняясь каким-то правилам, в противоположность устойчивому и предсказуемому движению планет, большинству людей донаучных времен кометы представлялись предвестниками несчастья, специально созданными разгневанными богами и посланными человечеству как предупреждение. Лишь постепенно научные исследования ослабили эти суеверные страхи. Однако полностью от них люди еще не избавились.). Только в 1577 году датский астроном Тихо Браге (1546–1601) доказал, что они находятся далеко в пространстве и блуждают среди планет.

    В 1705 году Эдмунд Галлей наконец вычислил орбиту одной из комет (теперь она называется кометой Галлея). Он определил, что она движется вокруг Солнца не по почти круговой орбите, как планеты, а по чрезвычайно вытянутому, очень эксцентричному эллипсу. Такая орбита с одной ее стороны приводит комету близко к Солнцу, с другой — выводит далеко за орбиту самой далекой из известных планет(Комета Галлея периодически появляется поблизости от Земли, и ее можно наблюдать невооруженным глазом. Последнее такое появление было в 1996 году, предыдущее — в 1910 году.).

    Невооруженному глазу кометы кажутся не просто точками света, как планеты и звезды, а гораздо большими, словно они — очень массивные тела. Французский естествоиспытатель Жорж Л. Л. Бюффон (1707–1788) полагал, что так оно и есть, и, рассматривая их движение и то, как они на одной стороне своей орбиты проносятся мимо Солнца, подумал, что неудивительно, если одна из них при, так сказать, незначительном просчете может попасть в Солнце. В 1745 году он предположил, что благодаря такому столкновению и образовалась Солнечная система.

    В наши дни общеизвестно, что кометы — это очень небольшие тела, не более нескольких километров в поперечнике. По утверждениям некоторых астрономов, например голландского астронома Яна Хендрика Оорта (р. 1900), существует около миллиарда таких тел, образующих своеобразную оболочку вокруг Солнца, отстоящую от него на расстояние около светового года. (И каждое из них настолько мало, и все они так разбросаны по огромному объему околосолнечного пространства, что не могут оказывать никакого влияния на наше представление о Вселенной в целом.) Кометы вполне могут быть неизменившимися остатками окраин первоначального облака пыли и газа, облака, из которого образовалась Солнечная система. Они, вероятно, состоят из наиболее легких элементов, превратившихся в ледяную субстанцию, — воды, аммиака, сероводорода, цианистого водорода, циана и т. п. Вкраплением в этих льдах могут быть различные количества скалистых пород в виде пыли и гравия. В некоторых случаях камень может составлять твердое ядро.

    Время от времени какая-нибудь из комет этой далеко находящейся оболочки может быть возмущена гравитационным влиянием сравнительно неподалеку находящейся звезды и может выйти на новую орбиту, которая доставит ее ближе к Солнцу; иногда даже очень близко к Солнцу. Если при прохождении сквозь планетарную систему комета будет возмущена гравитацией одной из довольно крупных планет, ее орбита также может измениться, но она может остаться в пределах планетарной системы, пока другое планетарное возмущение не выбросит ее еще раз, но сильнее (Кометы невелики и, следовательно, имеют намного меньшую массу и угловой момент, чем планеты. Ничтожные переносы углового момента, вызываемые гравитационным воздействием планет и спутников, производят неизмеримо малый орбитальный эффект, но все же достаточный, чтобы изменить орбиту кометы, и в некоторых случаях — радикально).

    Когда комета заходит внутрь Солнечной системы, тепло Солнца начинает растапливать лед, и облако пара, ставшее видимым благодаря включению в него частиц льда и пыли, окутывает центральное «ядро» кометы. Солнечный ветер сдувает облако пара прочь от Солнца и вытягивает его в длинный хвост. Чем больше и льдистее комета, чем ближе она подходит к Солнцу, тем длиннее и ярче ее хвост. Именно это облако пыли и пара придает комете ее громадные видимые размеры, но это чрезвычайно невесомое облако и имеет очень малую массу.

    После того как комета пройдет мимо Солнца и вернется в дальние края Солнечной системы, в ней станет меньше материи, ведь часть ее она потеряла по пути. С каждым появлением вблизи Солнца она несет потери, пока совсем не погибнет. Она либо уменьшится до своего центрального ядра или камня, либо, если его нет, до облака пыли и гравия, которые постепенно распределятся по орбите кометы.

    Поскольку кометы происходят из оболочки, окружающей Солнце в трех измерениях, они могут проходить Солнечную систему под любым углом. Так как их легко возмутить, орбиты их представляют собой почти любых видов эллипсы и занимают любое положение по отношению к планетам. К тому же орбиты всегда подвержены возмущениям с последующими изменениями.

    В силу этих обстоятельств кометы не отличаются таким же хорошим поведением, как другие члены Солнечной системы — планеты и спутники. Любая комета рано или поздно может попасть в какую-нибудь планету или спутник. В частности, она может попасть в Землю. Что уменьшает возможность такого происшествия, так это просто обширность пространства и сравнительная малость цели. Тем не менее, гораздо вероятнее, что именно комета угодит в Землю, а не какой-нибудь значительных размеров объект из межзвездного пространства.

    Например, 30 июня 1908 года в Российской империи на реке Тунгуска — очень близко от географического центра империи — в 6.45 утра произошел гигантский взрыв. Все деревья были повалены на два десятка миль в окружности. Было уничтожено стадо оленей, несомненно, было убито и множество других животных. К счастью, ни единому человеку не было причинено вреда. Взрыв произошел среди непроходимого сибирского леса, и в огромной области разрушения не было ни людей, ни построек. Прошли годы, прежде чем можно было исследовать место взрыва, и только тогда установили, что нет никакого признака какого-либо удара о Землю. Не было, например, кратера.

    С того времени предлагались различные объяснения причин ужасного события и отсутствия удара — мини-черная дыра, антивещество, даже межпланетные космические корабли со взрывающимися ядерными установками. Астрономы, несмотря на это, не без оснований считают, что это была малая комета. Оледенелые вещества, из которых она состояла, испарились, когда она погрузилась в атмосферу, и притом так быстро, что произошел сокрушительный взрыв. Взрыв в воздухе, возможно, на высоте менее 10 километров как раз и причинил бы такой ущерб, который фактически нанес Тунгусский взрыв, но комета, конечно, не достигла бы поверхности Земли, так что, естественно, не образовалось никакого кратера и в округе не было разбросано никаких осколков ее структуры.

    Нам сильно повезло, что взрыв произошел в одном из немногих на Земле мест, где людям не было причинено никакого вреда. Собственно, если бы комета шла точно тем самым курсом, которым она и шла, а Земля бы совершила в своем вращении на четверть оборота больше, город Санкт-Петербург был бы стерт с лица Земли. Нам повезло в этот раз, но подобное событие может произойти как-нибудь опять и с гораздо худшими последствиями, и мы не знаем, когда это произойдет. И при теперешнем положении маловероятно, что будет какое-либо предупреждение.

    Если хвост кометы считать кометой, тогда возможность столкновения становится еще вероятнее. Хвосты комет могут вытягиваться на многие миллионы километров и занимать настолько большой объем в пространстве, что Земля легко может оказаться в нем. И действительно, в 1910 году Земля прошла по хвосту кометы Галлея.

    Однако вещество хвоста кометы настолько сильно разрежено, что оно ненамного отличается от вакуума межпланетного пространства. Правда, хвост, состоящий из ядовитых газов, может быть опасным, если по плотности совпадает с атмосферой Земли, но типичная плотность хвоста безвредна. При прохождении Земли по хвосту кометы Галлея не было замечено никакого особого эффекта.

    Земля может также пройти по пыльному веществу, оставленному мертвыми кометами. И, конечно, проходит. Частицы пыли постоянно ударяют по атмосфере Земли и медленно опускаются на Землю, они служат ядрами для капель дождя. Большинство их микроскопического размера. Те же, что видимого размера, нагреваются, когда сжимают перед собой воздух, и светятся, сверкая как «падающая звезда» или «метеор», пока не испарятся.

    Никакие из этих объектов не могут причинить вреда, они только в конечном счете опустятся на Землю. Несмотря на то, что они такие маленькие, их так много попадает в атмосферу Земли, что, по некоторым оценкам, за счет этих «микрометеоритов» Земля каждый год приобретает 100 000 тонн массы. Это кажется довольно большим количеством, но за последние 4 миллиарда лет подобное наращивание массы, если оно постоянно удерживалось на таком уровне, оценивается менее чем в 1/10 000 000 общей массы Земли.

    Астероиды

    Кометы не единственные малые тела Солнечной системы. 1 января 1801 года итальянский астроном Джузеппе Пиацци (1746–1826) открыл новую планету, которую он назвал Церера. Она двигалась вокруг Солнца, по типичной планетарной орбите, которая была почти круговой и располагалась между орбитами Марса и Юпитера.

    Причина, почему она не была открыта раньше, заключалась в том, что она очень мала и, следовательно, принимала и отражала настолько мало солнечного света, что была совершенно неразличима невооруженным глазом. Она, собственно, только 1000 километров в диаметре, значительно меньше Меркурия, самая маленькая планета из известных к тому времени. Она даже меньше десяти спутников различных планет.

    Если бы на этом все кончилось, Цереру просто бы стали рассматривать как карликовую планету. Но на протяжении шести лет после открытия Цереры астрономы открыли еще три планеты, и каждая — даже меньше Цереры, и каждая — с орбитой между орбитами Марса и Юпитера.

    Поскольку эти планеты были так малы, они и в телескоп выглядели просто звездообразными точками света, а не дисками, как планеты обычные. Поэтому Уильям Гершель предложил называть новые тела «астероидами» («звездообразными»), и предложение было принято.

    С течением времени открывали новые и новые астероиды, и все они были либо еще меньше, чем четыре первые, либо дальше от Земли, чем они (либо и то и другое). Следовательно, они были еще более неясны, и их еще труднее было увидеть. К настоящему времени определено местоположение более 1700 астероидов и рассчитаны их орбиты. Считается, что существует их примерно от 40 000 до 100 000 с диаметром порядка километра. (И опять же они, каждый в отдельности, настолько малы и разбросаны по пространству такого огромного объема, что не нарушают общего взгляда астрономов на небо.) Астероиды отличаются от комет тем, что они скорее каменные или металлические, чем ледяные. Астероиды также могут быть значительно крупнее комет. Астероиды, следовательно, в худшем случае могут быть более опасными снарядами, чем кометы.

    Астероиды, однако, по большей части находятся на более безопасных орбитах. Почти все астероидные орбиты полностью расположены в части планетарного пространства между орбитами Марса и Юпитера. Если бы все они оставались там постоянно, они бы, конечно, не представляли никакой опасности для Земли.

    Астероиды, тем не менее, в особенности более мелкие, подвержены возмущениям и изменениям орбиты. С течением времени орбиты некоторых астероидов меняются таким образом, что остаются в пределах астероидного пояса или очень близко к нему. А по крайней мере восемь астероидов оказались настолько близко к Юпитеру, что были захвачены им и стали его спутниками, вращающимися вокруг планеты по далеким орбитам. У Юпитера могут быть и другие подобные спутники, которые слишком малы, чтобы быть уже обнаруженными. Кроме того, существует несколько дюжин спутников, которые не были захвачены Юпитером, а движутся по его орбите либо в 60 градусах впереди него, либо в 60 градусах позади, и закреплены на своих местах гравитационным влиянием Юпитера.

    Есть также астероиды, орбиты которых были возмущены в удлиненные эллипсы, причем так, что когда астероиды ближе всего к Солнцу, они находятся в астероидном поясе, а другая сторона орбиты выводит их далеко за Юпитер. Один такой астероид — Гидальго, открытый в 1920 году немецким астрономом Уолтером Бааде (1893–1960), доходит почти до орбиты Сатурна.

    Однако астероиды, которые находятся в пределах астероидного пояса, не представляют опасности для Земли; конечно, те, которые заблудились снаружи внешних пределов пояса и движутся за Юпитером, тоже не представляют опасности. Но нет ли астероидов, блуждающих в другом направлении, двигающихся в пределах орбиты Марса и, может быть, приближающихся к Земле?

    Первым свидетельством такой возможности было открытие в 1877 году американским астрономом Асафом Холлом (1829–1907) двух спутников Марса Они были крошечными объектами астероидного размера, и сейчас полагают, что они и есть захваченные астероиды, рискнувшие близко подойти к Марсу. Затем 13 августа 1898 года немецкий астроном Густав Витт открыл астероид, который он назвал Эросом. Его эллиптическая орбита была такой, что, когда он был дальше всего от Солнца, он оказывался в пределах астероидного пояса, когда же был ближе всего к Солнцу, он оказывался от него всего в 170 миллионах километров. Это примерно так же близко к Солнцу, как Земля(18 февраля 2000 года американский космический корабль был выведен к астероиду Эрос и передал на Землю его фотографии, из которых видно, что он имеет форму картофелины диаметром 33 километра. Дальнейшее его изучение поможет выработать систему защиты от астероидов).

    Собственно, если бы Эрос и Земля были в соответствующих точках своих орбит, расстояние между ними было бы лишь 22,5 миллиона километров.

    Естественно, не часто случается, чтобы оба этих объекта были в подходящих точках своих орбит одновременно, обычно они значительно дальше этого расстояния. Тем не менее Эрос может подойти к Земле ближе, чем любая другая планета. Это первый из обнаруженных ощутимых размеров объект Солнечной системы, который может приближаться к Земле ближе, чем Венера (однако не ближе Луны). Эрос и считается первым из так называемых «пасущихся у Земли» (В оригинале: Earth grazers).

    В ходе двадцатого века, когда для обнаружения астероидов стали использовать фотографию и другую технику, было обнаружено свыше дюжины других «пасущихся у Земли», и все они меньше Эроса, их диаметры от 1 до 3 километров.

    Как близко могут подобраться к Земле эти «пасущиеся»? В ноябре 1937 года астероид, названный Гермесом, как многие видели, прочертил небо, промчавшись не более чем в 800 000 километрах от Земли (почти два расстояния до Луны). Расчетная орбита Гермеса свидетельствует о том, что, если Земля и Гермес были бы в подходящих точках своей орбиты, Гермес приблизился бы к Земле на расстояние 310 000 километров и оказался бы даже ближе к нам, чем Луна. Это не особенно приятная мысль, ведь Гермес порядка километра в поперечнике, и столкновение с ним может причинить огромный вред. Однако мы не можем быть уверены в орбите, потому что Гермес с тех пор больше обнаружен не был, а это означает, что либо орбита была рассчитана неверно, либо Гермес был возмущен и покинул эту орбиту. И если бы его снова обнаружили, то лишь случайно.

    Несомненно, существует намного больше «пасущихся у Земли», чем мы можем увидеть в наши телескопы, ведь объект, проходящий мимо Земли на близком расстоянии, проносится настолько быстро, что его можно просто упустить. К тому же, если тело окажется слишком маленьким (как и во всех подобных случаях, «пасущихся у Земли» тоже существует больше мелких, чем крупных), оно даже в лучшем случае будет очень неясным.

    Американский астроном Фред Уиппл (р. 1911) полагает, что существует по крайней мере 100 «пасущихся у Земли» более 1,5 километра в диаметре. Отсюда следует, что вполне может быть несколько тысяч других, с диаметром от 0,1 до 1,5 километра.

    10 августа 1972 года очень маленькое «пасущееся у Земли» тело прошло сквозь верхние слои атмосферы и нагрелось до видимого свечения. При самом близком подходе оно было в 50 километрах над югом Монтаны. Считают, что диаметр его был 0,013 километра (Международное астрономическое общество в марте 1998 года сообщило, что утром 27 октября 2028 года астероид XF-11 диаметром 1,5 км очень близко подойдет к нашей планете и, возможно, даже столкнется с ней, но НАСА тут же уточнило, что «очень близко» — это на расстояние примерно миллиона километров).

    Итак, вкратце: регион, соседствующий с Землей, по-видимому, богат объектами, которых никто никогда не видел до двадцатого века, от такого огромного, как Эрос, до дюжины с лишним объектов размером с гору, до тысячи объектов размером с большой валун и миллиардов объектов, которые не что иное, как булыжники. (А если посчитать обломки комет, о которых я уже упоминал, то существуют несчетные триллионы объектов с булавочную головку и менее.) Может ли Земля проходить по столь населенному пространству и не подвергаться никаким столкновениям? Конечно, нет. Столкновения происходят постоянно(На основании некоторых данных ряд ученых (в том числе член-корреспондент Академии Наук СССР М. И. Будыко) в 1980 году пришли к выводу, что Земля уже однажды претерпела глобальную астероидную катастрофу, а именно в конце Мелового периода, т. е. около 70 миллионов лет назад. «Великое вымирание» в конце этого периода, которое привело к гибели гигантских пресмыкающихся, в том числе динозавров, некоторые склонны считать связанным именно с этой катастрофой и последовавшим резким изменением условий существования. Однако слежение за астероидной опасностью ведется и разрабатываются различные способы ее предотвращения. Так, «отцы» атомной бомбы с самого начала предполагали возможность ее применения для устранения астероидной опасности. Предполагается возможность изменения траектории движения Земли путем изменения на нее солнечного давления (например, с помощью изменения окраски ее поверхности), изменения движения опасных небесных тел. Но все это в далеком будущем, ибо в ближайшие столетия, а возможно, и тысячелетия астероиды нам не угрожают).

    Метеориты

    Почти во всех случаях эти фрагменты материи, достаточно большие, чтобы нагреться до видимого свечения, когда они проносятся по атмосфере (в это время они называются «метеорами»), превращаются в пыль и пар задолго до того, как достигнут поверхности Земли. Это в равной степени верно и по отношению к обломкам комет.

    Возможно, самый сильный «метеорный дождь» в исторические времена прошел в 1833 году, когда наблюдателям в восточной части Соединенных Штатов сверкающие полосы казались такими крупными, как снежные хлопья, и простые люди считали, что это звезды падают с неба и миру приходит конец. Однако, когда метеорный дождь закончился, звезды на небе невозмутимо продолжали светить. Все до единой остались на месте. Более того, ни один из тех сверкающих кусков материи не достиг Земли как объект обнаруживаемого размера.

    Если такой обломок, ударивший в атмосферу, достаточно велик, и его быстрое прохождение по воздуху недостаточно, чтобы испарить его полностью, тогда часть его достигнет поверхности Земли как «метеорит». Подобные объекты скорее всего не кометного происхождения, а являются маленькими «пасущимися у Земли», которые образовались в астероидном поясе.

    В исторические времена поверхности Земли достигли примерно 5500 метеоритов, и около одной десятой из них были железными, остальные — каменными.

    Каменные метеориты, если их не видели падающими, трудно отличить от обычной скалы, это может сделать только специалист. Железные метеориты[7], однако, очень заметны, поскольку на Земле металлическое железо не возникает естественным путем.

    До того как люди научились получать железо путем плавки железной руды, метеориты были ценным источником супертвердого металла для наконечников стрел, режущих кромок инструментов и орудий, намного более ценным, чем золото, хотя и менее привлекательным. Их настолько тщательно разыскивали, что в исторические времена в тех районах, где цивилизация процветала до 1500 года до н. э., не было найдено ни одного фрагмента железного метеорита. Культуры до железного века все их нашли и использовали.

    Однако метеоритные находки не отождествлялись с метеорами. А почему их надо было отождествлять? Метеорит был просто куском железа, обнаруженным на земле; метеор был вспыхивающим в воздухе светом (Метеор — от греческих слов: «верхняя атмосфера», поскольку древним грекам метеоры, как и кометы, казались чисто атмосферными явлениями. Поэтому «метеорология» — это наука, изучающая погоду, а не метеоры. Изучение метеоров по современным понятиям называется «метеоритикой»). Какая тут связь?

    Разумеется, были легенды об объектах, падающих с небес. «Черный камень» в Каабе, святыня мусульман, возможно, был метеоритом, падение которого кто-то видел. Другим, возможно, был своеобразный предмет почитания в храме Артемиды в Эфесе. Ученые до недавнего времени отметали подобные легенды, считали любой рассказ об объектах, падающих с неба, предрассудком.

    В 1807 году американский химик Бенджамин Силлиман (1779–1864) и его коллега сообщили, что видели в Или падение метеорита. Президент Томас Джефферсон, услышав о сообщении, заявил, что легче поверить в то, что два профессора-янки соврали, чем в то, что с неба падают камни. Тем не менее ученое любопытство было пробуждено многочисленными сообщениями подобного рода, и пока Джефферсон сохранял скептицизм, французский физик Жан Батист Био (1774–1862) уже в 1803 году написал доклад о метеоритах, и с тех пор такие падения перестали считаться небылицами.

    Метеориты, которые падали в цивилизованных странах, большей частью были маленькими и не причинили особого вреда. Существует лишь одно сообщение о попадании метеорита в человека, речь идет о женщине из Алабамы, которая получила скользящий удар и царапину на бедре.

    Самый крупный из известных метеоритов все еще лежит в земле Намибии, в Юго-Западной Африке. По грубым оценкам его вес 66 тонн (Еще больший метеорит упал 12 февраля 1947 года в отрогах Сихотэ-Алиня в Приморском крае. По грубым оценкам его вес при вхождении в земную атмосферу составлял 1500–2000 тонн. При движении в атмосфере он взорвался и выпал железным метеорным дождем на площади 3 квадратных километра. Общая его масса, достигшая поверхности Земли, оценивается в 100 тонн). Самый крупный из железных метеоритов демонстрируется в Хайденском планетарии в Нью-Йорке, его вес около 34 тонн.

    Метеорит, даже не больше этого, если он упадет в густонаселенном городском районе, может причинить значительный ущерб недвижимости и убить сотни и даже тысячи людей. Велики ли все-таки шансы, что когда-нибудь нам будет нанесен и впрямь сильный удар? В космосе разгуливают довольно большие горы, которые могут причинить большую беду, если они ударят по нам.

    Можно возразить, что большие объекты в пространстве (которых, конечно, гораздо меньше, чем маленьких объектов) находятся на орбитах, которые не пересекаются с орбитой Земли и никогда не подходят к нам ближе. Это объясняет, почему нас до сих пор по-настоящему не тряхануло и, следовательно, почему нам не надо бояться сильного удара в будущем.

    Однако этот довод не убедителен по двум причинам. Во-первых, даже если большие метеорические объекты имеют орбиты, не пересекающие нашу, то будущие возмущения могут изменить их орбиты и поместить объект на курс потенциального столкновения. Во-вторых, уже были достаточно сильные удары, скажем, столь сильные, что могли бы разрушить город. И если они произошли не в исторические времена, то геологически произошли совсем недавно.

    Свидетельства таких ударов добыть нелегко. Представьте себе, что сильный удар произошел несколько сотен тысяч лет назад. Метеорит, вероятно, закопался глубоко в землю, до него нелегко добраться и изучить. Разумеется, он может быть под большим кратером, но влияние ветра, воды и жизни разрушает кратер полностью через несколько тысяч лет.

    Но даже при всем этом были обнаружены признаки круглых образований, иногда полностью или частично заполненных водой, их легко различить с воздуха. Круглость, в сочетании с четким отличием от окружающих его образований, вызывает острое подозрение, что это «ископаемый кратер», а более близкое обследование может затем подтвердить это.

    Около двадцати подобных ископаемых кратеров обнаружено в разных концах Земли, и все они возникли в пределах последнего миллиона лет.

    Последний ископаемый кратер определенно идентифицирован, это кратер Унгава-Квебек, на полуострове Унгава, в самой северной части канадской провинции Квебек. Открыт в 1950 году канадским изыскателем Фредом В. Чаббом (его так и называют иногда — кратер Чаб-ба). На фотографиях, сделанных с воздуха, видно круглое озеро, окруженное другими меньшими озерами. В диаметре кратер 3,34 километра и в глубину 0,361 километра. Край озера, его берег, поднят над окружающей сельской местностью на 0,1 километра.

    Ясно, что если бы подобный удар повторился и пришелся на Манхэттен, он бы полностью разрушил остров, нанес бы невероятный ущерб части соседнего Лонг-Айленда и Нью-Джерси, убил бы несколько миллионов человек.

    Меньший, но гораздо лучше сохранившийся кратер находится в штате Аризона, рядом с городом Уинслоу. В этом засушливом районе нет воды и вообще мало видов жизни, и кратер хорошо сохранился. Он и сегодня выглядит совсем свеженьким и представляется удивительно похожим — прямо как маленький двоюродный брат — на кратеры, которые мы видим на Луне.

    Он был открыт в 1891 году, но первым человеком, который в 1902 году заявил, что кратер — результат падения метеорита, а не потухший вулкан, был Даниэл Моро Баррингер. Поэтому кратер называют «Большой метеоритный кратер Баррингера» или иногда просто: «метеоритный кратер».

    В поперечнике этот кратер 1,2 километра, в глубину около 0,18 километра. Его край поднимается над окружающей сельской местностью почти на 0,060 километра. Кратер образовался до 50 000 лет назад, хотя некоторые предполагают, что всего лишь 5000 лет назад. Вес метеорита, образовавшего кратер, оценивается разными учеными от 12 000 тонн до 1,2 миллиона тонн. Это означает, что метеорит мог быть от 0,075 до 0,360 километра в диаметре (Кратер, образовавшийся около 35 миллионов лет назад, обнаружен на Таймыре, найдены старые кратеры в ряде районов России, на Украине, в Германии).

    Но все это в прошлом. А что мы можем ожидать в будущем? Астроном Эрнст Опик считает, что «пасущееся у Земли» должно двигаться по своей орбите в среднем в течение 100 миллионов лет перед тем, как столкнется с Землей. Если предположить, что существует две тысячи подобных объектов, достаточно больших, чтобы уничтожить город или даже принести еще больший вред при ударе, тогда средний интервал между такими бедствиями будет всего 50 000 лет.

    Каковы же шансы попадания в определенную цель? Скажем, в город Нью-Йорк? Площадь Нью-Йорка — это одна полуторамиллионная часть площади Земли.

    Это означает, что средний интервал между ударами, которые могли бы разрушить Нью-Йорк, около 33 миллиардов лет. Если мы предположим, что общая площадь расположения крупных городов на Земле в 100 раз больше, чем у Нью-Йорка, то средний интервал между градоразрушительными ударами около 330 миллионов лет.

    Это в самом деле не повод, чтобы терять покой и сон, и неудивительно, что в письменных свидетельствах человеческой цивилизации (которой всего-то 5000 лет) нет ясного описания того, как падающий метеорит разрушает город.

    Метеориту внушительных размеров нет необходимости ударять непосредственно в город, чтобы принести большой ущерб. Если он упадет в океан, то в семи из десяти случаев образуется такая приливо-отливная волна, которая опустошит побережье, топя людей и разрушая сооружения. Если среднее время между разрушительными прямыми ударами 50 000 лет, то среднее время между приливо-отливными волнами, спровоцированными метеоритами, примерно 71 000 лет (В начале 1997 года появилось сообщение о том, что японские ученые высказали предположение о падении 65 миллионов лет назад крупного метеорита; упав в океан, он вызвал такое облако пара, которое надолго затмило Солнце, что привело к гибели динозавров и некоторых других организмов).

    Самое худшее состоит в том, что пока нет возможности заблаговременно предупредить о падении метеорита. Такой метеорит, вполне вероятно, будет достаточно маленьким и достаточно быстро двигающимся, чтобы достичь атмосферы Земли незамеченным. А от времени, когда он начнет светиться, до удара пройдет самое большее несколько секунд.

    Если разрушение ударом большого метеорита и несколько менее вероятно, чем любая из других катастроф, о которых речь шла выше, то оно отличается от них в двух аспектах. Во-первых, хотя это может принести бедствие, повлечь за собой огромный вред, но совершенно маловероятно, чтобы такие удары были катастрофическими в том же смысле, в каком, например, было бы превращение Солнца в красный гигант. Вряд ли метеорит разрушит Землю, или уничтожит человечество, или даже сметет цивилизацию. Во-вторых, возможно, недолго остается до того времени, когда предотвращение этих ударов станет возможным до нанесения бедственного удара.

    Мы выдвигаемся в космос, в пределах века на орбите вокруг Земли и на Луне могут появиться астрономические обсерватории (Телескопы на спутниках уже появились). Без мешающей атмосферы астрономы в таких обсерваториях будут иметь возможность лучше видеть «пасущихся у Земли». Они смогут наблюдать эти опасные тела пристальнее, определять положение их орбит тщательнее. Это будет относиться и к тем «пасущимся у Земли», которые слишком малы, чтобы видеть их с земной поверхности, но достаточно велики, чтобы разрушить город, и вследствие их большого количества намного опаснее, чем настоящие гиганты.

    Тогда, возможно, спустя сотню лет или через тысячу лет какой-нибудь астроном оторвется от своего компьютера, чтобы сказать: «Орбита встречи!» И начнется контратака, ожидавшая этого момента в течение десятков лет или даже веков. Опасный камень будет выслежен, и при подходящем, заранее рассчитанном его положении в космосе будет послано мощное устройство для его перехвата и взрыва. Камень станет сиять, испаряться и превратится в булыжники. Земля не понесет никакого урона, самое худшее, что произойдет при этом, — Земля будет награждена впечатляющим метеорным ливнем.

    А может быть и так, что каждый объект, который проявит малейшую склонность к сближению и который астрономы посчитают не представляющим научного интереса, будет уничтожен. И этот специфический вид бедствия никогда больше не заставит нас беспокоиться.


    8. Замедление вращения Земли

    Приливы и отливы

    Катастрофа третьего класса предполагает гибель Земли как места обитания жизни в процессе, который не затрагивает Солнце. Как я только что сказал, о возможности такой катастрофы в результате вторжения из космоса, из-за лунной орбиты, не следует беспокоиться. Это либо очень маловероятно, либо не настолько уж катастрофично, либо, в некоторых случаях, находится на грани предотвращения. Нам следует тут же спросить себя, а нет ли чего-нибудь такого, что находится вовсе не за лунной орбитой, но, так сказать, внутри системы Земля — Луна, и что может угрожать нам катастрофой третьего класса? Начнем тогда с того, что разберемся с Луной.

    Из всех астрономических тел ощутимых размеров Луна намного ближе к Земле. Расстояние от Луны до Земли, от центра до центра — 384 404 километра. Если бы орбита Луны вокруг Земли была совершенно круглой, это расстояние было бы неизменно. Орбита, однако, слегка эллиптическая, а это означает, что наименьшее расстояние при приближении Луны к Земле — 356 394 километра, и наибольшее при ее удалении — 406 678 километров.

    Расстояние от Луны до Земли — это 1/100 расстояния от Земли до Венеры, когда последняя находится ближе всего к Земле; или это 1/140 расстояния от Земли до Марса при его максимальном приближении. Ни один объект, кроме единожды наблюдавшегося астероида Гермес (он не более километра в поперечнике), не оказывался почти так же близко к Земле, как Лука.

    Можно указать на близость Луны по-другому: это единственное пока астрономическое тело, достаточно близкое для того, чтобы люди могли достичь его. Луна находится в трех днях пути от нас. Чтобы достичь Луны на ракете, требуется примерно столько же времени, сколько нужно, чтобы пересечь Соединенные Штаты по железной дороге.

    Является ли необычайная близость Луны сама по себе опасностью? Может ли она по какой-нибудь причине упасть и травмировать Землю? Если это произойдет, это будет намного катастрофичнее, чем любое столкновение с астероидом, ведь Луна — тело весьма ощутимых размеров. Ее диаметр 3476 километров, или немного меньше четверти диаметра Земли. Ее масса составляет 1/81 массы Земли и в 50 раз больше массы самого крупного астероида.

    Если Луна упадет на Землю, последствия столкновения будут, безусловно, гибельными для жизни на нашей планете. В результате столкновения оба объекта могут разлететься на мелкие кусочки. К счастью, как я говорил мимоходом в предыдущей главе, нет ни малейшей возможности, чтобы это случилось, разве только в составе другой, большей катастрофы. Угловой момент нельзя устранить вдруг и полностью, кроме как переносом на какое-то ощутимых размеров тело, приближающееся достаточно близко с соответствующего направления и с соответствующей скоростью. Шансы, что это случится, настолько ничтожны, что мы можем отбросить всякие страхи по этому поводу.

    Нет необходимости опасаться и того, что с Луной случится что-нибудь такое, что будет угрожать катастрофой Земле. Например, совершенно невероятно, что Луна взорвется и на нас обрушится ливень обломков. С геологической точки зрения Луна почти мертва, ее внутреннего тепла недостаточно, чтобы произвести какие-либо действия, которые заметно изменили бы ее структуру или хотя бы ее поверхность.

    В общем, мы с уверенностью можем считать, что Луна во многом будет оставаться такой, какая она сегодня, за исключением чрезвычайно медленных изменений, и что ее материальное тело не будет представлять для нас никакой опасности до тех пор, пока с течением времени Солнце не расширится в красный гигант, и как Луна, так и Земля будут разрушены.

    Однако Луне нет надобности наносить Земле удар собой или своей частью для того, чтобы воздействовать на нас. Она оказывает гравитационное воздействие на нас через пространство, и воздействие сильное. Оно, собственно, второе по силе после гравитационного воздействия Солнца.

    Гравитационное влияние любого астрономического объекта на Землю зависит от массы этого объекта, а масса Солнца в 27 миллионов раз больше массы Луны.

    Гравитационное влияние, однако, уменьшается, как квадрат расстояния. Расстояние Солнца от Земли в 390 раз больше, чем Луны от Земли, а 390 х 390 = 152 000. Если мы разделим 27 000 000 на это число, мы получим, что гравитационное притяжение Солнца действует на Землю в 178 раз сильнее, чем лунное.

    Несмотря на то, что сила лунного притяжения, действующая на нас, составляет только 0,56 процента от силы притяжения Солнца, это все-таки намного больше, чем любое другое гравитационное воздействие на нас. Так, лунное притяжение в 106 раз больше, чем притяжение Юпитера, когда он расположен ближе всего, и в 167 раз больше, чем притяжение Венеры, когда она ближе всего. Гравитационное воздействие на Землю остальных астрономических объектов еще меньше.

    Может ли гравитационное притяжение, когда оно столь велико по сравнению со всеми другими объектами, кроме Солнца, оказаться для нас источником катастрофы? На первый взгляд кажется, что нет, не может, ведь гравитационное притяжение Солнца намного сильнее, чем у Луны. И поскольку первое не вызывает у нас тревоги, то почему же должно беспокоить второе?

    Отрицательный ответ был бы правильным, если бы астрономические тела реагировали на силу гравитации во всех точках одинаково. Но это не так. Давайте вернемся к вопросу приливо-отливных эффектов, о которых я упомянул в предыдущей главе, и рассмотрим его более детально в отношении Луны.

    Поверхность Земли, обращенная к Луне, находится на среднем расстоянии от центра Луны в 378 026 километров. Поверхность Земли на другой стороне от Луны дальше от центра Луны на толщину Земли и, следовательно, находится на расстоянии в 390 782 километра.

    Сила притяжения Луны уменьшается, как квадрат расстояния. Если расстояние от центра Земли до центра Луны принять за 1, тогда расстояние от поверхности Земли, обращенной к Луне, составит 0,983, а расстояние от поверхности, обращенной прочь от Луны, составит 1,017.

    Если сила притяжения поверхности Земли, обращенной к Луне, таким образом, 1,034, то сила притяжения поверхности Земли, обращенной прочь от Луны, составляет 0,966. Это означает, что притяжение Луной ближайшей поверхности Земли на 7 процентов сильнее, чем притяжение дальней поверхности Земли.

    Результатом силы притяжения Луны, изменяющейся с расстоянием, является то, что Земля тянется к Луне. Сторона, находящаяся ближе к Луне, притягивается сильнее, чем центр, а центр, в свою очередь, притягивается сильнее, чем сторона, расположенная в сторону от Луны. В результате Земля деформируется с обеих сторон. Одна деформация — стороны, обращенной к Луне, происходит, так сказать, более энергично, чем остальной структуры Земли. Другая деформация — стороны, обращенной прочь от Луны, так сказать, отстает от всего остального.

    Так как Земля состоит из неэластичного камня, который особенно не поддается даже большим усилиям, деформация в твердом теле Земли невелика, но она есть. Однако вода океана более податлива и деформируется сильнее, она «выпячивается» в направлении к Луне.

    При вращении Земли континенты, оказываясь, так сказать, «под Луной», испытывают накат «выпяченной» воды. Вода по инерции набегает несколько выше береговой линии, затем отступает, происходят приливы и отливы. На противоположной, обращенной в сторону от Луны стороне Земли повернувшиеся туда континенты испытывают другую деформацию воды, через 12,5 часа происходит прилив, затем отлив. (Дополнительные полчаса набегают из-за того, что Луна за это время продвигается на некоторое расстояние.) Таким образом происходят два прилива и два отлива в день.

    Приливо-отливный эффект, производимый на Земле любым телом, пропорционален его массе, но уменьшается, как расстояние в кубе. Солнце (повторим) в 27 миллионов раз массивнее Луны и в 390 раз дальше от Земли. 390 в кубе составляет около 59 300 000. Если мы поделим массу Солнца (соответственно Луны) на куб его расстояния от Земли (соответственно Луны), мы обнаружим, что приливо-отливный эффект Солнца на Землю составляет лишь 0,46 от приливо-отливного эффекта Луны.

    Итак, Луна является основной причиной приливо-отливного эффекта на Земле, а Солнце значительно уступает ей. Все другие астрономические тела вообще не производят измеримого приливо-отливного эффекта на Землю.

    Теперь нам следует спросить: не может ли существование приливов и отливов каким-нибудь образом привести к катастрофе?

    Более длинный день

    Говорить о приливах-отливах и о катастрофах, не переводя дыхания, по-видимому, было бы странно. В человеческой истории приливы и отливы существовали всегда, и они были совершенно регулярны и предсказуемы. Они всегда были полезны. Так, корабли обычно отплывали с началом прилива, когда вода поднимала их высоко над любыми скрытыми препятствиями, а отступающая вода несла корабль в нужном ему направлении.

    Приливы и отливы и в будущем могут стать полезными иным образом. Так, во время прилива вода может подняться в резервуар, из которого может выйти при отливе, вращая турбину. Приливы и отливы могут таким образом дать миру неиссякаемый источник энергии. При чем же тут катастрофа?

    Так вот, когда Земля поворачивается и на сушу накатывается вспучившаяся вода, двигаясь на берег и с берега, вода должна преодолеть сопротивление трения, и не только на самом берегу, но и на тех участках морского дна, где океан, случается, бывает особенно мелководен. Часть энергии вращения Земли затрачивается на преодоление этого трения.

    Когда Земля поворачивается, твердое тело планеты тоже деформируется, выпячиваясь в сторону Луны, и это выпячивание составляет примерно одну треть от выпячивания океана. Тем не менее выпячивание твердого тела Земли происходит за счет, так сказать, трения камня о камень, когда кора тянется кверху и опускается, и этот процесс повторяется снова и снова. Часть энергии вращения Земли затрачивается на это тоже. Конечно, энергия на самом деле не уничтожается. Она не исчезает, а превращается в тепло. Другими словами, в результате приливов и отливов Земля приобретает немножко тепла и немного теряет в скорости вращения. День становится длиннее.

    Земля настолько массивна и вращается настолько быстро, что обладает огромным запасом энергии. Даже если большое количество энергии (большое по человеческим понятиям) затрачивается и превращается в тепло при преодолении приливо-отливного трения, день удлиняется очень незначительно. Однако даже очень незначительное увеличение продолжительности дня имеет совокупный эффект.

    Предположим, что мы начали с дня с его настоящей продолжительностью 86 400 секунд и что каждый год день будет в среднем на 1 секунду длиннее. По истечении 100 лет он станет длиннее на 100 секунд или 1,5 минуты. Невелика разница.

    Предположим, тем не менее, что мы начнем век с часами, которые показывают правильное время. Ко второму году они будут по сравнению с Солнцем спешить на 1 секунду каждый день, к третьему году — на 2 секунды каждый день, к четвертому году — на 3 секунды каждый день и так далее. В конце века, когда число дней, если бы мы следовали за восходами и закатами, было бы 36 524, а наши часы зарегистрировали бы 36 534,8 наборов дней по 86 400 секунд. Короче, имея увеличение длительности дня только на 1 секунду в год, мы накапливаем ошибку почти в 11 дней всего за век.

    Конечно, день на самом деле увеличивается значительно меньшими темпами.

    В древние времена определенные затмения были зарегистрированы как имевшие место в определенное время дня. Пересчитывая назад, устанавливаем, что они должны были бы произойти в другое время. Расхождение является накопленным результатом очень медленного удлинения дня.

    Можно, конечно, усомниться, что древние люди пользовались только самыми примитивными методами измерения времени, и вся их концепция регистрации времени отличалась от нашей. Было бы, следовательно, рискованным делать какие-то выводы на основании того, что они говорили о времени затмений.

    Однако в этом случае имеет значение не только время. Полное затмение Солнца можно видеть только с небольшого участка Земли. Если, скажем, затмение должно было произойти за час до расчетного времени, то Земля имела бы больше времени для поворота, и в умеренном поясе затмение произошло бы примерно на 1200 километров восточнее, чем указывают наши расчеты.

    Даже если не доверять полностью тому, что говорят древние люди о времени затмения, мы можем быть уверены, что уж место-то затмения они сообщают точно, а это скажет нам о том, что мы хотим знать. По их свидетельствам мы определим суммарную ошибку, а по ней и темп удлинения дня. Вот так и было установлено, что день на Земле удлиняется со скоростью 1 секунда за 62 500 лет.

    Это можно представить себе чем угодно, только не катастрофой. День сейчас приблизительно на 1/14 секунды длиннее, чем во времена, когда строили пирамиды.

    Несомненно, разница не так велика, чтобы с ней считаться, но исторические времена — это мгновение по сравнению с геологическими эрами. За миллион лет наращивается 16 секунд, а история Земли насчитывает много миллионов лет.

    Рассмотрим ситуацию, какой она была 400 миллионов лет назад, когда жизнь, которая до того существовала почти 3 миллиарда лет, наконец стала выходить из воды на сушу. За последовавшие 400 миллионов лет день увеличился на 6400 секунд, если настоящий темп увеличения сохранялся все это время.

    Значит, 400 миллионов лет назад день был на 6400 секунд короче, чем сейчас. Поскольку 6400 секунд — это примерно 1,8 часа, жизнь выползла на сушу в мир, в котором день составлял только 22,2 часа. Поскольку нет причин предполагать, что длительность года изменилась за этот период, это также означает, что в году было 395 тех, более коротких дней.

    Это только расчет. А нельзя ли найти прямое свидетельство? Оказывается, существуют ископаемые кораллы, которые образовались примерно 400 миллионов лет назад. Такие кораллы растут в течение дня одним темпом, в течение ночи — другим, и одним темпом летом, другим — зимой. В результате на их поверхности остаются отметки, очень похожие на кольца деревьев, которые отмечают дни и ночи.

    В 1963 году американский палеонтолог Джон Вест Уэллс тщательно изучил эти ископаемые кораллы и нашел около 400 тонких отметок на каждую грубую отметку. Это означает, что в те древние времена, 400 миллионов лет назад, в году было около 400 дней. А если так, то каждый день продолжался 21,9 часа.

    Это довольно близко к расчетам. На удивление близко, поскольку есть причина полагать, что темп удлинения (или укорачивания, если идти вспять) не обязательно постоянен. Существуют факторы, меняющие темп, с которым теряется энергия вращения. Расстояние до Луны изменяется (как мы скоро увидим) со временем, то же самое происходит с очертаниями континентов, мелями в морях и так далее.

    Однако предположим (шутки ради), что день удлинялся этим неизменным темпом всю историю Земли. В таком случае, как быстро вращалась Земля 4,6 миллиарда лет назад, когда она только что образовалась? Это легко подсчитать, полагая, что величина изменения длительности дня постоянна. Период вращения Земли при ее рождении был 3,6 часа.

    То есть, конечно, не обязательно так. Более сложные расчеты показывают, что день при самой своей короткой продолжительности был около 5 часов. Но не исключено, что и Луна не сопровождала Землю с самого начала, что она была захвачена лишь некоторое время спустя после образования Земли, и приливо-отливные явления начались менее чем 4,6 миллиарда лет назад, и, может быть, даже значительно менее. В таком случае день в начальные времена существования Земли был примерно 10 или даже 15 часов.

    Пока мы еще не можем быть уверены. У нас нет прямого свидетельства о длительности дня в самые ранние периоды истории Земли.

    Во всяком случае, более короткий день в далеком прошлом сам по себе не имеет большого значения для жизни. Определенное пятно на земной поверхности в течение короткого дня имело бы меньше времени разогреться и меньше времени остыть за короткую ночь. Следовательно, температура первобытной Земли имела тенденцию быть несколько более ровной, чем сейчас, и вполне очевидно, что живые организмы могли жить и жили при этом. Собственно, условия были даже более благоприятными для жизни, чем сейчас.

    Что же, однако, насчет будущего и продолжающего удлиняться дня?

    Удаляющаяся Луна

    Пройдут миллионы лет, и день будет все удлиняться, поскольку приливы и отливы никуда не денутся. Когда же это кончится? Мы можем получить представление об этом, если рассмотрим Луну, которая подвергается влиянию приливов и отливов Земли, когда Земля подвергается лунным.

    Масса Земли в 81 раз больше, чем у Луны, так что, при прочих равных, ее приливо-отливное влияние на Луну должно быть в 81 раз больше, чем влияние Луны на нас. Однако не все так просто. Луна меньше Земли, поперечник Луны немного больше четверти поперечника Земли. По этой причине гравитационное притяжение претерпевает меньшее падение от одной стороны Луны до другой, и это снижает приливо-отливный эффект. Учитывая размер Луны, приливо-отливное воздействие Земли на Луну в 32,5 раза больше, чем Луны на Землю.

    Все же это означает, что Луна подвергается гораздо большим потерям, когда вращается, и поскольку масса ее значительно меньше, чем масса Земли, у нее для потери меньше энергии вращения. Период вращения Луны, следовательно, должен удлиняться гораздо большим темпом, чем у Земли, и сейчас он должен быть довольно большим.

    Так оно и есть. Период вращения Луны относительно звезд сейчас 27,3 дня. Это оказывается равно периоду ее оборота вокруг Земли относительно звезд, так что Луна, когда вращается, всегда повернута к Земле одной своей стороной.

    Это не случайность, не невероятное совпадение. Период вращения Луны рос до тех пор, пока не стал достаточно большим, так что Луна подставляла Земле всегда одну и ту же сторону. Как только это произошло, приливо-отливная деформация всегда присутствует в одних и тех же точках на поверхности Луны, одна с видимой с Земли стороны направлена в сторону Земли, другая со стороны, никогда не видимой с Земли, направлена в сторону от Земли. Луна больше не вращается относительно этой приливо-отливной деформации, и больше нет преобразования вращения в тепло. Луна, так сказать, гравитационно заперта на месте.

    Раз вращение Земли замедляется, значит, в конечном счете она станет вращаться так медленно, что всегда будет направлена одной стороной в сторону Луны и тоже будет гравитационно заперта на месте.

    Означает ли это, что Земля станет вращаться так медленно, что ее день будет по длительности 27,3 продолжительности настоящего дня? Нет, будет значительно хуже, и вот по какой причине: можно превратить энергию вращения в тепло, поскольку это вопрос превращения одного вида энергии в другой и не нарушает закон сохранения энергии. Однако вращающийся объект имеет также и угловой момент, который не может быть превращен в тепло. Он может быть только перенесен.

    Если мы рассматриваем систему Земля — Луна, то и Земля, и Луна — каждая обладает угловым моментом по двум причинам: каждая вращается вокруг своей оси и каждая оборачивается вокруг общего центра гравитации. Последний расположен на линии, соединяющей центр Луны и центр Земли. Если бы Земля и Луна были в точности равны по массе, то общий центр гравитации был бы расположен как раз на полпути между ними. Поскольку Земля более массивна, чем Луна, общий центр гравитации расположен ближе к центру Земли. Фактически, поскольку Земля в 81 раз массивнее Луны, общий центр гравитации в 81 раз дальше от центра Луны, чем от центра Земли.

    Это означает, что общий центр гравитации расположен (если мы рассматриваем Луну на ее среднем расстоянии от Земли) в 4746 километрах от центра Земли и в 379 658 километрах от центра Луны. Общий центр гравитации находится, таким образом, в 1632 километрах ниже поверхности Земли на стороне, обращенной к Луне.

    В то время как Луна описывает большой эллипс вокруг общего центра гравитации каждые 27,3 дня, центр Земли описывает гораздо меньший эллипс вокруг него в эти же самые 27,3 дня. Два тела движутся таким образом, что центр Луны и центр Земли всегда остаются на точно противоположных сторонах общего центра гравитации.

    Когда Луна и Земля каждая удлиняют свой период вращения вследствие эффекта приливо-отливного трения, каждая теряет угловой момент вращения. В соответствии с законом сохранения углового момента, каждая должна приобрести угловой момент, связанный с ее обращением вокруг центра гравитации, с полной компенсацией потери углового момента, связанного с вращением вокруг своей оси. Таким образом возрастает угловой момент вращения Земли и Луны вокруг общего центра, вынуждающий их двигаться дальше от него.

    Другими словами, когда либо Земля, либо Луна, либо та и другая увеличивают периоды своего вращения, они удаляются друг от друга, сохраняя общий угловой момент системы Земля — Луна неизменным.

    В далеком прошлом, когда Земля вращалась вокруг своей оси быстрее, а Луна еще не замедлилась до точки гравитационного замыкания, они были ближе друг к другу. И если угловой момент собственного вращения у них был больше, то угловой момент вращения вокруг общего центра был меньше. Когда Луна и Земля были ближе друг к другу, они обходили друг друга по кругу, конечно, за меньшее время.

    Таким образом, 400 миллионов лет назад, когда день на Земле длился только 21,9 часа, расстояние от центра Луны до центра Земли составляло только 90 процентов нынешнего. Луна была в 370 000 километрах от Земли. Если бы мы продолжили и далее наш расчет назад, то получилось бы, что 4,6 миллиарда лет назад, когда Земля только что сформировалась, Луна была в 217 000 километрах от Земли, или немного дальше половины ее нынешнего положения.

    Расчет небезупречен, потому что, когда Луна оказывается ближе к Земле (если мы смотрим назад по времени), приливо-отливный эффект при прочих равных проявляется сильнее. Есть определенные шансы на то, что в ранние периоды существования Земли Луна была еще ближе, быть может, даже на расстоянии порядка 40 000 километров.

    Заглядывая в будущее сейчас, когда период вращения Земли растет, можно сказать, что Земля и Луна будут медленно отдаляться. Луна медленно по спирали движется прочь от Земли. Каждый оборот вокруг Земли увеличивает среднее расстояние между ними приблизительно на 2,5 миллиметра.

    Вращение Луны будет замедляться очень постепенно, так что оно будет продолжать соответствовать увеличивающейся длительности месяца. Со временем, когда период вращения Земли, продолжая удлиняться, достигнет точки, когда и Земля навсегда обратится одной стороной к Луне, последняя отступит настолько, что месяц будет длиться 47 дней. В то же время и период собственного вращения Луны будет 47 дней, так же как и у Земли. Два тела будут вращаться, как гантель, жестко скрепленные стержнем. Центры Земли и Луны будут находиться тогда на расстоянии 480 000 километров.

    Приближающаяся Луна

    Если бы не было приливо-отливных эффектов, вращение такой гантели продолжалось бы вечно. Однако приливо-отливные эффекты Солнца продолжали бы существовать. Эти эффекты работали бы в довольно сложной манере, ускоряя вращение Земли и Луны и подтягивая эти два тела друг к другу, но медленнее, чем они сейчас отдаляются. Очевидно, это сближение продолжалось бы неопределенно долго, и можно предположить, что Луна в конце концов упадет на Землю (хотя я и начал с того, что этого не может случиться), потому что ее угловой момент вращения вокруг общего центра полностью перейдет в угловой момент собственного вращения. Она не упадет в обычном смысле этого слова, но будет постепенно продвигаться по своему пути к нам, по мучительно медленно и неуклонно уменьшающейся спирали. Но даже и в этом случае она не упадет, столкновения не произойдет.

    Когда оба тела будут подходить все ближе и ближе друг к другу, приливо-отливные эффекты будут усиливаться, как куб уменьшающегося расстояния. Ко времени, когда Землю и Луну будет разделять расстояние (от центра до центра) около 15 500 километров, между двумя их поверхностями останется лишь 7400 километров, приливо-отливный эффект Луны на Землю будет в 15 000 раз сильнее, чем сейчас. Но приливо-отливный эффект Земли на Луну будет все же почти в 500 000 сильнее, чем приливо-отливный эффект Луны на Землю сегодня.

    Тогда приливо-отливное притяжение Луны к Земле будет столь сильным, что Луна будет просто разорвана на части и разломится на куски. Лунные осколки как результат дальнейших столкновений (и последующего разламывания) распространятся по лунной орбите, и Земля окажется опоясанной кольцом, как Сатурн, только намного более ярким и плотным.

    А что станет с Землей, когда все это будет происходить?

    Когда Луна подойдет к Земле, ее приливо-отливный эффект колоссально возрастет. Земля не подвергнется опасности разлома, поскольку приливо-отливный эффект на нее будет значительно меньше, чем ее приливо-отливный эффект на Луну. Кроме того, сильное гравитационное поле Земли будет более эффективно удерживать ее целостность, сопротивляясь приливо-отливному эффекту; другое дело с Луной. И, конечно, как только Луна расколется и гравитационное поле ее фрагментов распределится вокруг Земли, приливо-отливный эффект станет намного меньше.

    Однако именно перед расколом Луны приливы и отливы на Земле станут такими огромными, что океан, поднятый на несколько километров, будет полностью окатывать континенты. Поскольку период вращения Земли в этих условиях сближения с Луной может оказаться 10 часов, приливы и отливы будут повторяться каждые пять часов.

    Не представляется возможным, что суша или море при подобных условиях будут достаточно стабильны, чтобы поддерживать что-либо, кроме высокоприспособленных форм жизни, скорее всего, очень простых по структуре.

    Разумеется, можно предположить, что люди, если в ту пору они еще будут существовать, сумеют развить подземную цивилизацию ко времени подхода Луны (это, несомненно, будет очень медленное приближение, и она не подойдет врасплох). Однако это не спасет их, поскольку при подобном приливо-отливном воздействии трещащий по всем швам земной шар будут сотрясать постоянные землетрясения.

    Однако нет нужды волноваться по поводу судьбы Земли при приближении Луны, поскольку Земля станет необитаемой задолго до этого.

    Давайте вернемся к модели Земли и Луны, вращающихся друг с другом, как гантель, с периодом обращения 47 дней. Мы увидим, что Земля уже мертва. Представьте себе, что поверхность Земли находится под лучами Солнца 47 дней: температура поднимется до такого уровня, что можно кипятить воду. Представьте себе поверхность Земли, погруженную на 47 дней в темноту: температура станет антарктической.

    Полярные области будут открыты солнечной радиации даже более, чем на 47 дней за один цикл, но это Солнцу, находящемуся низко над горизонтом. На медленно вращающейся Земле тропические области будут под лучами тропического Солнца 47 дней — существенная разница.

    Крайние значения температур, несомненно, сделают Землю непригодной для большинства форм жизни. По крайней мере, она будет необитаемой на поверхности, хотя мы можем себе представить, что люди создадут подземную цивилизацию, о чем я упомянул ранее.

    И все же не стоит тревожиться и о гантельном вращении системы Земля — Луна, поскольку, как ни странно, этого никогда не случится.

    Если день на Земле увеличивается на 1 секунду каждые 62 500 миллионов лет, то через 7 миллиардов лет, в течение которых Солнце будет оставаться в главной последовательности, день наберет около 31 часа и станет продолжительностью 2,3 современного дня. Однако Луна за это время отдалится и ее приливо-отливный эффект уменьшится, так что будет справедливо сказать, что по истечении 7 миллиардов лет день на Земле будет примерно в два раза длиннее, чем сейчас.

    Так что никак невозможно, чтобы день удлинился настолько, что Земля станет вращаться с Луной, как гантель, не говоря уже о том, что обе они начнут сближаться по спирали, чтобы построить великолепное кольцо. Задолго до того как случится нечто подобное, Солнце раздуется в красный гигант и равным образом разрушит и Землю, и Луну.

    Отсюда следует, что Земля будет оставаться обитаемой, что же касается периода ее вращения, то пока она существовала бы с удвоенной продолжительностью дня, крайние значения температуры днем и ночью отличались бы больше, чем сейчас, и были бы несколько некомфортными.

    Однако человечество, несомненно, покинет планету к тому времени (предполагая, что оно переживет эти миллиарды лет), и именно раздувающееся Солнце прогонит его от себя, а не замедляющееся вращение.

    9. Дрейф земной коры

    Внутреннее тепло

    Поскольку, похоже, что тела ощутимых размеров извне (даже Луна) серьезно не угрожают Земле, пока Солнце остается в главной последовательности, давайте на время отвлечемся от остальной части Вселенной (Нам придется время от времени возвращаться к ней в связи с небольшими телами) и сосредоточимся на планете Земля.

    Может ли при отсутствии вторжения инородного тела иметь место катастрофа, которая коренится в самой Земле? Например, не может ли планета вдруг неожиданно взорваться? Или не может ли она расколоться надвое? Или, быть может, ее целостность окажется каким-то образом настолько радикально ослаблена, что это приведет к катастрофе третьего класса, положив конец Земле как обитаемому миру? В конце концов, Земля очень горячее тело, только ее поверхность холодная.

    Первоначальным источником тепла была кинетическая энергия малых тел, которые 4,6 миллиарда лет назад сбились вместе, образовав Землю. Кинетическая энергия преобразовалась в тепло, достаточное, чтобы расплавить внутренность. И с тех пор, за миллиарды лет, Земля не остыла. Причиной тому — внешние слои камня, которые являются хорошим изолятором и плохо проводят тепло. Поэтому из Земли в окружающее пространство просачивается лишь сравнительно небольшое количество тепла.

    Разумеется, некоторое количество тепла просачивается, так как нет совершенных изоляторов; несмотря на это, никакого охлаждения не происходит. Во внешних слоях Земли существуют определенные виды атомов, являющиеся радиоактивными. Четыре из них особенно важны: уран-238, уран-235, торий-232 и калий-40. Их распад идет очень медленно, после миллиардов лет существования Земли некоторые из этих элементов существуют практически в первозданном виде. Конечно, большая часть урана-235 и калия-40 в настоящий момент уже распалась, но распалась только половина ура-на-238 и только пятая часть тория-232.

    Энергия преобразуется в тепло, и хотя количество тепла, произведенного одним-единственным атомом, незначительно, общее количество тепла, произведенного большим количеством распадающихся атомов, почти соответствует количеству тепла, теряемого недрами Земли. Следовательно, Земля скорее слегка набирает тепло, чем теряет.

    А не может ли случиться так, что агрессивно горячие недра (а по некоторым оценкам температура в центре Земли достигает 26 000 по Цельсию) создадут такую расширяющую силу, которая, словно огромная планетарная бомба, взорвет холодную кору, оставив только пояс астероидов на месте, где когда-то находилась Земля?

    Собственно говоря, такой поворот событий вполне возможен, так как между орбитами Марса и Юпитера уже имеется астероидный пояс. Откуда он взялся? Когда в 1802 году немецкий астроном Генрих В. М. Олберс (1754–1840) открыл второй астероид — Паллас, он тут же сделал предположение, что оба астероида Церера и Паллас — маленькие обломки большой планеты, которая когда-то двигалась по орбите между Марсом и Юпитером и взорвалась. Теперь, когда мы знаем, что существуют десятки тысяч астероидов, большинство которых в поперечнике не более двух километров, эта мысль выглядит еще более правдоподобной.

    Представляется, что есть еще одно свидетельство по этой части. Дело в том, что 90 процентов метеоритов, которые достигают поверхности Земли (и которые, как считают, приходят из астероидного пояса), — это каменные метеориты, и 10 процентов — железо-никелевые. Это вызывает предположение, что они представляют собой обломки планеты с железо-никелевой сердцевиной и каменной мантией вокруг нее. У Земли такая сердцевина составляет примерно 17 процентов объема всей планеты. Марс несколько менее плотен, чем Земля, и, следовательно, должен иметь сердцевину (более плотную часть планеты) в пропорции, меньшей к общему объему, чем у Земли. Если взорвавшаяся планета была похожа на Марс, это объясняет соотношение каменных и железо-никелевых метеоритов.

    Есть даже процента два каменных метеоритов — «углеродистых хондритов», которые содержат значительное количество легких элементов — даже воду и органические соединения. Их можно рассматривать как возникшие в самой внешней части коры взорвавшейся планеты. И все же, как ни убедительно звучит теория взрывного происхождения астероидов, она не принята астрономами. Наибольшая оценка общей массы астероидов определяет ее как примерно 1/10 массы Луны. Если бы все астероиды были единым телом, диаметр его был бы приблизительно 1600 километров. А чем меньше тело, тем меньше тепла в его центре и тем меньше причин мы найдем для того, чтобы оно взорвалось. Представляется крайне маловероятным, чтобы тело, имеющее размеры всего лишь со средний астероид, могло взорваться.

    Представляется гораздо более вероятным, что когда Юпитер рос, он был настолько эффективен в захвате дополнительной массы, находящейся по соседству (благодаря своей уже достаточно большой массе), что оставил очень мало от того, что теперь называется поясом астероидов, для накопления в планету. Действительно, он оставил так мало, что Марс уже не смог вырасти таким большим, как Земля или Венера. Просто не осталось в наличии достаточно материи.

    Возможно также, что астероидная материя была слишком мала по массе и создавала слишком слабое гравитационное поле для того, чтобы собраться в единую планету, особенно потому, что этому противодействовало приливо-отливное воздействие гравитационного поля Юпитера. Вместо этого могли сформироваться несколько умеренных размеров астероидов, а столкновения между ними могли превратить в порошок несколько более мелких объектов.

    Короче, теперь большинство исследователей сошлось на том, что астероиды не продукт взорвавшейся планеты, а материалы планеты, которая так и не сформировалась.

    Поскольку в космосе между Марсом и Юпитером не было взорвавшейся планеты, у нас меньше оснований полагать, что какая-нибудь другая планета взорвется. Более того, не следует недооценивать силу гравитации. У объекта размером с Землю гравитационное поле доминирует. Расширительное влияние внутреннего тепла далеко не достаточно для того, чтобы преодолеть силу гравитации, направленную внутрь.

    Стоит поинтересоваться, не поднимет ли радиоактивный распад атомов температуру выше опасного уровня? Что касается взрыва, то тут опасаться нечего. Если температура повысится настолько, что расплавит Землю, планета лишится существующей атмосферы и океанов, но остальная ее часть продолжит вращаться как огромная капля, все еще удерживаемая в целостности благодаря своей гравитации. (Гигантская планета Юпитер, как сейчас полагают, является как раз такой вращающейся каплей с температурой в центре порядка 54 000 градусов по Цельсию, однако гравитационное поле Юпитера в 318 раз сильнее, чем у Земли.) Разумеется, если бы Земля стала достаточно горячей, чтобы расплавить всю планету, кору и все прочее, это было бы настоящей катастрофой третьего класса. О взрыве тут и говорить нечего.

    Однако это тоже вряд ли случится. Естественная радиоактивность Земли непрерывно падает. Сейчас она меньше половины той, что была в начале истории планеты. Если планета не расплавилась за первые миллиарды лет своей жизни, она не расплавится и сейчас. И даже если температура Земли возрастает в течение всего периода ее существования в постоянно уменьшающемся темпе и пока не преуспела в расплавлении коры, но все еще работает над этой задачей, температура будет подниматься настолько медленно, что предоставит человечеству много времени, чтобы оставить планету.

    Более вероятно, что тепло недр Земли, в самом лучшем случае, поддерживает самое себя, и, если радиоактивность планеты продолжит падать, может начаться очень медленная потеря тепла. Мы даже можем предположить, что в очень далеком будущем Земля станет совершенно холодной.

    Воздействует ли это на жизнь таким образом, что можно будет посчитать это катастрофой? Что касается температуры поверхности Земли, несомненно, такого воздействия не будет. Почти все тепло нашей поверхности поступает от Солнца. Если Солнце погаснет, температура поверхности Земли станет намного ниже, чем в Антарктике, а тепло недр будет оказывать лишь незначительное смягчающее действие. С другой стороны, если температура недр упадет до нуля, но Солнце не погаснет, то мы, что касается температуры поверхности, не заметим разницы. Тем не менее внутреннее тепло Земли связано с энергией распада атомов, с которой люди знакомы. Не окажется ли потеря его в какой-то степени катастрофичной, даже если Солнце не погаснет?

    Это вопрос, над которым не надо ломать голову. Он никогда не встанет. Спад радиоактивности и потеря тепла продолжатся с такой малой скоростью, что ко времени, когда Солнце покинет главную последовательность, внутри Земля наверняка останется почти таким же горячим телом, как и сейчас.

    Катастрофизм

    Перейдем теперь к катастрофам третьего класса, которые не ставят под угрозу целостность Земли, но, тем не менее, сделают планету необитаемой.

    Основной частью многих мифов является рассказ о мировых бедствиях, которые ведут к уничтожению всей или почти всей жизни. Очень вероятно, что они родились из бедствий меньших размеров, а потом преувеличились в памяти и были еще больше преувеличены в легенде.

    Например, самые ранние цивилизации возникли в долинах рек, а долины рек иногда подвергаются сильным наводнениям. Особенно бедственное наводнение, которое смыло весь район, с которым люди были знакомы (а люди ранних цивилизаций имели ограниченное представление о протяженности Земли), могло показаться им гибелью мира.

    Древние шумеры, которые проживали в долинах Тигра и Евфрата, там, где теперь Ирак, по-видимому, подверглись особенно страшному наводнению около 2800 года до н. э. Оно произвело на них такое сильное впечатление и так потрясло их мир, что последующие события они датировали, как «до Потопа» и «после Потопа».

    В конце концов шумерская легенда о Потопе выросла в то, что содержится в первом известном миру эпическом произведении: «Сказании о Гильгамеше», властителе шумерского города Урук. В своих приключениях он сталкивается с Ут-Напиштим, семья которого одна спаслась от Потопа на большом корабле, построенном им самим.

    Эпос был популярен и распространился за пределы шумерской культуры и сохранился у наследников шумеров, которые продолжали жить в долинах Тигра и Евфрата. Он достиг иудеев и, возможно, греков, и те, и другие включили историю о Потопе в свои мифы о возникновении Земли. Версия, лучше всего известная на Западе, библейская история, изложенная в главах 6–9 Книги Бытия. Рассказ о Ное и ковчеге слишком хорошо известен, чтобы стоило его здесь пересказывать.

    В течение многих веков события Библии были приняты почти всеми евреями и христианами как божественное откровение и, следовательно, как незыблемая истина. Словом, предполагалось, что в третьем тысячелетии до н. э. был всемирный потоп, который уничтожил практически всю жизнь на суше.

    Это расположило ученых считать, что различные свидетельства изменений, которые они обнаружили в коре Земли, являются результатом резких катаклизмов планетарного Потопа. Когда оказалось, что Потопа недостаточно, чтобы объяснить все изменения, возникло искушение предположить, что периодически происходили другие катастрофы. Убеждение в этом получило название «катастрофизм"(Или, как принято в российской науке, „Теория катастроф“.).

    Соответствующее объяснение ископаемых остатков вымерших видов и разработка теории эволюции были задержаны существованием катастрофизма. Швейцарский натуралист Шарль Бонне (1720–1793) придерживался, например, взгляда, что окаменелые ископаемые являются остатками вымерших видов, которые погибли в результате той или иной планетарной катастрофы, периодически происходившей в мире. Ноев Потоп был лишь самой последней из них. После всякой катастрофы семена или другие остатки жизни, существовавшей до катастрофы, развивались в новые, более высокие формы. Словом, будто Земля была грифельной доской, а жизнь — сообщением, которое то и дело стирали и переписывали.

    Такой взгляд был принят и французским анатомом Байроном Жоржем Кювье (1749–1832), который решил, что четыре катастрофы, в том числе последняя — Потоп, объясняют все ископаемые находки. Но их находили все больше и больше, и нужно было все больше и больше катастроф, чтобы разобраться с одними и подготовить почву для других. В 1849 году ученик Кювье Альсид д'Орбиньи (1802–1857) решил, что требуется не меньше двадцати семи катастроф.

    Д'Орбиньи был последним вздохом катастрофизма. Действительно, по мере того как все больше и больше обнаруживали ископаемых останков и история прошлого жизни вырисовывалась все более детально, стало ясно, что не было катастроф типа Бонне-Кювье.

    Бедствия в истории Земли были не раз, и, как мы увидим, жизнь испытывала на себе их драматические последствия, но не было такой катастрофы, чтобы положить конец всей жизни и заставить ее начаться снова. Не имеет значения, где провести черту и сказать: «Вот катастрофа»; всегда можно найти большое количество видов, которые проживали в этот период без изменений и без какого-либо воздействия на них.

    Жизнь, без сомнения, непрерывна, и ни в какое время, с тех пор как она появилась свыше трех миллиардов лет назад, не было какого-нибудь четкого знака полного ее прерывания. В любой момент за весь этот период Земля, как представляется, была в изобилии заполнена живущими созданиями.

    В 1859 году, лишь десять лет спустя после заявления д'Орбиньи, английский натуралист Чарлз Роберт Дарвин (1809–1882) опубликовал свою книгу «О происхождении видов путем естественного отбора». Она продвинула вперед то, что мы называем «теорией эволюции», и она имела в виду постепенное изменение видов, без катастроф и возрождения. Книга была встречена значительной оппозицией прежде всего со стороны тех, кто был шокирован тем, что новая теория опровергает утверждения Книги Бытия, но она победила.

    Даже сегодня огромное количество людей, приверженных буквальной интерпретации Библии и совершенно не знакомых с научными свидетельствами, из-за невежества остаются враждебно настроенными к концепции эволюции. Тем не менее нет научных сомнений в том, что эволюция является фактом, хотя остается много возможностей для дискуссий относительно того, каковы точные механизмы, благодаря которым она происходила (Те, кто предпочитает отрицать эволюцию, часто утверждают, что это «просто теория», но очевидность слишком далека от этого. Мы можем также сказать, что закон всемирного тяготения Исаака Ньютона (1643–1727) — тоже «просто теория».). При всем том история Потопа и пристрастие многих людей к драматическим выдумкам в том или ином виде сохраняют идею катастрофизма за пределами науки.

    Сохраняющаяся привлекательность идей Иммануила Великовского обязана, по крайней мере частично, катастрофизму, который он проповедует. Есть нечто драматическое и волнующее в видении Венеры, летящей к нам, и в прекращении вращения Земли. Тот факт, что это не согласуется ни с какими законами небесной механики, не беспокоит человека, которого волнуют подобные истории.

    Великовский поначалу выдвинул свои идеи, чтобы объяснить библейскую легенду о том, как Джошуа останавливает Солнце и Луну. Великовский принимает то, что Земля вращается, потому что решил остановить вращение. Если бы вращение вдруг остановилось, как подразумевает библейский рассказ, все, что есть на Земле, со свистом бы улетело.

    Даже если вращение прекратить постепенно, в течение дня (чтобы объяснить, почему все осталось на месте), то энергия вращения преобразуется в тепло и закипят океаны. Если бы океаны Земли вскипели во время Исхода, трудно понять, почему они так богаты морской жизнью сейчас.

    Даже если проигнорировать кипение, какова вероятность того, что Венера так воздействует на Землю, что возобновит ее вращение в том же самом направлении и с тем же самым периодом — до секунды, — который существовал ранее?

    Разумеется, многих астрономов ставит в тупик и расстраивает влияние подобных бессмысленных взглядов на множество людей, но они недооценивают притягательность катастрофизма. Они также недооценивают недостаток у большинства людей опыта в научных вопросах — особенно у людей, которые прекрасно образованы в иных областях. Действительно, образованные неученые гораздо легче поддаются псевдонауке, чем другие люди, поскольку простой факт образования, скажем, в области литературы способен возбудить у человека ложное мнение о его способности разобраться в чужой сфере.

    Существуют другие примеры катастрофизма, которые привлекают неискушенных. Например, какое-нибудь заявление, что Земля время от времени вдруг поворачивается так, что полярные зоны становятся тропическими и, наоборот, находит благодарных слушателей. Таким образом можно объяснить, почему некоторые сибирские мамонты замерзли так неожиданно. Предположить же, что мамонты просто совершили какое-то неудачное действие, оступились, попали в расщелину или болото, — это представляется недостаточным. Даже если Земля и впрямь так повернется, то тропическая зона в тот же миг не замерзнет. Потеря тепла требует времени. Если печку в доме вдруг прекратить топить холодным зимним днем, пройдет порядочно времени, прежде чем температура внутри дома упадет до уровня замерзания.

    Кроме того, совершенно невероятно, чтобы Земля повернулась таким образом. В результате вращения Земли существует экваториальное выпячивание, и Земля из-за него представляет собой как бы гигантский гироскоп. Механические законы, управляющие движением гироскопа, достаточно хорошо известны, а количество энергии, которое необходимо, чтобы таким образом повернуться, огромно. Несмотря на Великовского, нет источника такой энергии, если не считать вторжения планетарных объектов извне. За последние четыре миллиарда лет такого вторжения не было, да и в обозримом будущем не будет.

    Несколько более трезвое предположение состоит в том, что не Земля целиком повернулась, а сдвинулась только ее тонкая кора. Кора в несколько дюжин миль толщиной и составляющая только 0,3 от общей массы Земли, располагается на мантии Земли. Этот толстый слой скалы, который, хотя он не настолько горяч, чтобы быть расплавленным, тем не менее довольно горяч и поэтому может представляться мягким. Возможно, время от времени кора скользит по поверхности мантии, производя для жизни, находящейся на поверхности, все эффекты полного смещения и с гораздо меньшей тратой энергии. (Такую мысль высказал в 1886 году немецкий писатель Карл Лоффельхольц фон Кольберг.) Что же вызвало такое смещение коры? Считали, что якобы огромная ледовая шапка в Антарктике, находящаяся не точно на Южном полюсе, в результате вращения Земли вызывает вне центра вибрацию, которая в конечном счете образует трещину коры, отделяет ее и затормаживает.

    Но это совершенно невозможно. Мантия ни в коем случае не может быть настолько размягченной, что кора проскальзывает по ней. Если бы она и была такой, экваториальное выпячивание удержало бы кору на месте. И, во всяком случае, расположение антарктической ледовой шапки не точно на земной оси недостаточно, чтобы производить такой эффект.

    Более того, этого просто никогда не было. Заторможенной, скользящей по мантии коре пришлось бы разрываться на части при прохождении от полярных регионов к экваториальным. Разрывы и сморщивание коры в случае подобного скольжения обязательно оставили бы массу следов — если не считать, что этот процесс мог уничтожить жизнь и не оставить никого для отыскания этих следов.

    Собственно, можно обобщить. За последние 4 миллиарда лет не было катастроф, охватывающих всю нашу планету, которые были бы достаточно радикальными, чтобы вмешаться в развитие жизни, и возможность в будущем катастрофы, возникающей полностью из механики планеты, в высшей степени невероятна.

    Движущиеся континенты

    Придя к выводу об отсутствии таких катастроф, можем ли мы решить, что Земля абсолютно стабильна и неизменяема? Конечно, нет. Изменения происходят, и происходят даже изменения типа, который я только что исключил. Как же это возможно?

    Рассмотрим природу катастроф. Нечто катастрофичное, если оно происходит быстро, может быть совсем не катастрофичным, если происходит медленно. Если вы спуститесь с небоскреба очень быстро, спрыгнув с крыши, — это станет для вас личной катастрофой. С другой стороны, если спуститесь достаточно медленно на лифте — это не составит для вас никакой проблемы. В обоих случаях произойдет одно и то же — перемещение сверху вниз. Катастрофично изменение положения или нет, целиком будет зависеть от скорости изменения.

    Аналогичный пример: пуля, вылетающая из дула оружия и ударяющая вам в голову, обязательно вас убьет, и та же самая пуля, двигаясь со скоростью, которую приобрела, запущенная рукой человека, попав вам в голову, причинит только боль.

    Поэтому я исключил как неприемлемые катастрофы, изменения, которые происходят быстро. Те же самые изменения, но происходящие медленно, — совсем другое дело. Очень медленные изменения могут происходить и происходят, и они не должны быть катастрофическими, и они и на самом деле не являются катастрофическими.

    Например, исключив возможность катастрофического скольжения коры, мы должны признать, что очень медленное скольжение, перемещение коры вполне возможно.

    Считается, что около 600 миллионов лет назад, по-видимому, был период оледенения (судя по царапинам на камнях соответствующего возраста), это происходило одновременно в экваториальной Бразилии, в Южной Африке, в Индии и в Западной и Юго-Восточной Австралии. Эти районы, должно быть, были покрыты ледовыми шапками, как сейчас Гренландия и Антарктика.

    Но как такое могло произойти? Если расположение на Земле суши и океанов было тогда точно таким, как сейчас, и если полюса были точно на тех же местах, то, чтобы тропические районы оказались под ледовыми шапками, вся Земля должна была бы оледенеть, а это уж совсем невероятно. В конце концов, в других континентальных районах нет признаков оледенения в то время.

    Если мы предположим, что полюса изменили свое положение так, что тропическая зона была когда-то полярной и наоборот, то оказывается невозможно найти такое положение для полюсов, которое объяснило бы все те стародавние ледовые шапки в одно и то же время. Если бы полюса оставались на месте, а кора Земли целиком бы переменила положение, проблема возникает такая же. Нет расположения, при котором объясняются все ледовые шапки.

    Единственное, чем можно объяснить это давнишнее оледенение, это то, что массивы суши сами изменили свое положение относительно друг друга и что различные оледенелые места были когда-то рядом друг с другом и находились на том или другом полюсе (или некоторые на одном полюсе, а прочие — на другом). Такое возможно?

    Если взглянуть на карту мира, нетрудно заметить, что очертания восточного берега Южной Америки и западного побережья Африки на удивление похожи. Если вы попробуете вырезать оба континента (полагая, что форма их не слишком искажена при нанесении на плоскую поверхность карты), вам удастся приладить их друг к другу удивительно хорошо. Это было обнаружено, как только очертания этих побережий стали достаточно детально известны. Английский ученый Фрэнсис Бэкон (1564–1626) указал на это еще в 1620 году. А не могло ли быть так, что Африка и Южная Америка когда-то составляли одно целое, что они раскололись на части вдоль линии настоящего побережья и затем дрейфовали по отдельности?

    Первым, кто детально занялся этой проблемой, был немецкий геолог Альфред Лотар Вегенер (1880–1930), который опубликовал в 1912 году книгу «Происхождение континентов и океанов».

    Континенты состоят из менее твердых пород, чем дно океана. Континенты в основном из гранита, океанское дно главным образом базальтовое. Не могли ли гранитные блоки континентов очень медленно дрейфовать по низлежащему базальту? Это было бы чем-то вроде скольжения коры, только вместо перемещения всей коры движение совершали бы лишь континентальные блоки, и притом очень медленное.

    Если бы континентальные блоки двигались независимо, не было бы серьезной проблемы с экваториальным выпячиванием, и, если бы они двигались очень медленно, не потребовалось бы очень много энергии, и в результате не было бы катастрофы. Более того, если бы континентальные блоки двигались независимо, это бы объясняло очень древнее оледенение обширных регионов мира, некоторых даже рядом с экватором. Все эти регионы были когда-то одновременно у полюсов.

    Такой дрейф континентов мог бы дать ответ и на биологические загадки. Существуют сходные виды растений и животных в различных, далеко отстоящих друг от друга частях мира, разделенных океанами, через которые эти растения и животные не могли переправиться. В 1880 году австрийский геолог Эдвард Зюсс предположил, что когда-то существовали земляные мосты, соединявшие континенты. Например, он представлял себе большое суперконтинентальное пространство, протянувшееся вокруг всего южного полушария, объясняя, что именно благодаря ему эти особи достигли различных массивов суши, которые очень удалены друг от друга. Иными словами, выходит, что суша поднималась и опускалась в ходе истории Земли, одни и те же места в одно время были сушей, а в другое время — океанским дном.

    Идея эта была популярной, но чем больше геологи узнавали о морском дне, тем менее вероятным казалось, что морское дно когда-либо было частью континентов.

    Целесообразнее было представить движения горизонтальные, когда единый континент разламывается на части. Каждая часть несла бы на себе определенную группу особей, и в итоге аналогичные виды оказывались бы разделенными океанскими просторами.

    Вегенер предположил, что когда-то все континенты существовали как единый, обширный блок суши, расположенный в едином огромном океане. Этот континент он назвал «Пангея» (от греческих слов, означающих: «вся Земля»). По какой-то причине Пангея раскололась на несколько фрагментов, которые дрейфовали друг от друга, пока не достигли теперешнего расположения континентов.

    Книга Вегенера вызвала значительный интерес, но геологам трудно было принять ее всерьез. Низлежащие слои континентов Земли просто слишком неэластичны, чтобы дать возможность континентам дрейфовать. Южная Америка и Африка были твердо зафиксированы на своих местах, и ни той, ни другой не было возможности дрейфовать по базальту. Поэтому в течение сорока лет теория Вегенера отвергалась.

    Тем не менее, чем больше изучали континенты, тем больше убеждались в том, что они когда-то были вместе друг с другом, особенно если рассматривать края континентальных шельфов как истинные границы континентов. Было бы наивным считать это просто совпадением.

    Допустим, что Пангея действительно существовала и на самом деле разделилась на фрагменты. В таком случае дно океанов, которое оказалось между фрагментами, должно быть относительно молодым. Ископаемые некоторых пород на континентах по возрасту достигали 600 миллионов лет, но ископаемые атлантического морского дна, которое должно было сформироваться только после того, как раскололась Пангея, не могли быть настолько старыми. Собственно говоря, ископаемых старше 135 миллионов лет никогда не обнаруживалось в породах на дне Атлантики.

    Накапливалось все больше и больше свидетельств в пользу дрейфа континентов. Однако требовались идеи относительно механизма, который бы сделал это возможным, поскольку вегенеровская пахота гранитом по базальту казалась совершенно невозможной.

    Ключ нашелся при изучении морского дна Атлантики, которое скрыто от нас толщей воды. Первый намек на то, что там должно скрываться нечто интересное, был получен в 1853 году, когда понадобилось промерить глубины для прокладки трансконтинентального кабеля, чтобы соединить Европу с Америкой электрической связью. Тогда появились сообщения, что посреди океана обнаружены признаки подводного плато. Атлантический океан действительно оказался мельче посередине, чем по краям, и его центральная мель в честь кабеля была названа «Телеграфным плато».

    В те дни замер глубин производился путем забрасывания за борт длинного линя с грузом на конце. Это было утомительно, трудно и не очень точно, и таких операций можно было произвести не так много, так что конфигурацию океанского дна можно было представить себе только очень схематично.

    Однако во время Первой мировой войны французским физиком Полем Ланжевеном (1872–1946) был разработан способ определения глубин посредством отражения ультразвука от подводных объектов (называемый теперь «сонаром»). В 20-е годы германское океанографическое судно начало производить замеры глубин в Атлантическом океане с помощью сонара, и к 1925 году было установлено, что протяженная подводная горная гряда проходит через весь Атлантический океан примерно посередине. Со временем оказалось, что в других океанах тоже существует такая же гряда и фактически опоясывает земной шар длинным, извивающимся «Среднеокеанским гребнем».

    После Второй мировой войны американские геологи Уильям Моррис Эвинг (1906–1974) и Брюс Чарлз Хеезен (1924–1977) энергично взялись за дело и к 1953 году установили, что вдоль гребня, параллельно его оси проходит глубокий каньон. В конце концов он был обнаружен на всем протяжении Среднеокеанского гребня, так что его иногда называют «Большой глобальной расселиной».

    Большая глобальная расселина делит кору Земли на крупные пласты, достигающие в некоторых случаях тысяч километров в поперечнике и толщины от 70 до 150 километров. Поскольку эти пласты кажутся аккуратно подогнанными друг к другу, они получили название «тектонических плит».

    Обнаружение тектонических плит подтвердило дрейф континентов, но не по принципу Вегенера. Континенты не плыли и не дрейфовали по базальту. Определенный континент вместе с частями прилегающего морского дна был неотъемлемой частью определенной плиты. Континенты могли двигаться, если двигались плиты, а было ясно, что плиты двигались. Как же они могли двигаться, если были плотно соединены?

    Их можно было расталкивать. В 1960 году американский геолог Гарри Хэммонд Гесс (1906–1969) представил доказательства в пользу «расширения морского дна». Горячий, расплавленный камень закипал и медленно всплывал с больших глубин, например в Средней Атлантике, и затвердевал на или около поверхности. Это вскипание и затвердевание камня разделяло плиты и заставляло их раздвигаться со скоростью в некоторых местах от 2 до 18 сантиметров в год. Таким образом, например, разделились Южная Америка и Африка. Иначе говоря, континенты не дрейфовали, их толкали.

    Откуда же взялась энергия для этого? Ученые не уверены, но вероятное объяснение состоит в том, что в мантии, находящейся под корой, имеются очень медленные «водовороты»: мантия достаточно горяча, чтобы под большим давлением быть пластичной. Если кружение направлено вверх, на запад и вниз, а соседнее кружение — вверх, на восток и вниз, то противоположные движения под корой имеют тенденцию толкать две соседние плиты в разные стороны, причем между ними вскипает горячее вещество.

    Естественно, если две плиты расталкиваются в разные стороны, другие концы этих плит должны толкаться в соседние плиты. Когда две плиты медленно сталкиваются друг с другом, создается мятая складка, образуются горные цепи. Если они сталкиваются быстрее, одна плита скользит под другой, сдвигается в горячую область и расплавляется. Океанское дно опускается и образует впадины.

    Вся история Земли может быть прослежена по тектоническим плитам, исследование этих плит неожиданно стало центральной догмой геологии, как эволюция — центральная догма биологии и как атомная теория — центральная догма химии. Когда тектонические плиты раздвигаются или соединяются, поднимаются горы, опускается морское дно, расширяются океаны, разделяются или соединяются континенты.

    Время от времени континенты соединяются в одну огромную массу суши, затем опять раскалываются, снова соединяются и снова разделяются. Как представляется, последнее образование Пангеи произошло 225 миллионов лет назад, как раз тогда, когда началась эволюция динозавров, а разламываться Пангея начала примерно 180 миллионов лет назад.

    Вулканы

    Может показаться, что подвижка тектонических плит вряд ли явление катастрофическое, ведь она происходит так медленно. В течение исторических времен движение континентов можно было установить только с помощью особо точных научных измерений. Однако движение плит производит случайные эффекты помимо изменений на карте, эффекты неожиданные и локально-бедственные.

    Линии, по которым стыкуются плиты, — эквивалент трещин в земной коре, называются «сдвигами». Эти сдвиги — не просто линии, они имеют всевозможные ответвления и рукава. Сдвиги — это слабые места, через которые тепло и расплавленный камень, находящийся под корой, могут выбраться наверх. Тепло может заявить о себе довольно благожелательно, согревая грунтовые воды, образуя выходы пара, горячие источники. Иногда вода нагревается до тех пор, пока давление не достигнет критической точки, после чего масса ее вырывается на поверхность, высоко в воздух. Затем все утихает, снова создается подземный запас, снова нагревается, снова выбрасывается. Это — гейзер.

    В некоторых районах эффект тепла более радикален. Расплавленный камень поднимается и застывает. Новый расплавленный камень вскипает сквозь возвышенность отвердевшего камня и увеличивает ее высоту. В конце концов образуется гора с центральным проходом, по которому расплавленный камень, или «лава», может подниматься и оседать и который может затвердевать на более или менее длительный период, потом плавиться снова.

    Это «вулкан», который может быть действующим или недействующим. Иногда определенный вулкан более или менее активен в течение длительных периодов времени и, как любое хроническое заболевание, не является тогда очень опасным. Иногда, когда подземные события по каким-либо причинам повышают уровень активности, лава поднимается и выливается наружу. Тогда потоки раскаленной лавы сползают по склонам вулкана и иногда направляются к населенным пунктам, которые приходится эвакуировать.

    Гораздо более опасны вулканы, которые какое-то время неактивны. Центральный проход, по которому в прошлом поднималась лава, полностью затвердел. Если бы внизу под ним окончательно прекратилась всякая активность, тогда все было бы хорошо. Тем не менее иногда случается, что подземная среда спустя длительное время начинает производить избыток тепла. Лава, образующаяся внизу, тогда оказывается заперта затвердевшей лавой наверху. Создается давление, и в конце концов верхушка вулкана под давлением прорывается. Происходит очень резкий и, что еще хуже, более или менее неожиданный выброс газа, пара, твердых камней и раскаленной лавы. Собственно, если бы под вулканом была задержана вода и под огромным давлением превращена в пар, вся верхушка вулкана могла бы разорваться, произведя взрыв намного больший, чем могли бы устроить люди даже в наши дни термоядерных бомб. Хуже также и то, что недействующий вулкан может казаться совершенно безобидным. Он может не проявлять никакого намека на активность на памяти человечества, а почва, которая сравнительно недавно появилась из глубин, обычно очень плодородна. Она привлекает людей, и когда вдруг начинается извержение (если оно все-таки происходит), последствия его могут быть особенно бедственными.

    В мире существует 455 действующих вулканов, которые извергаются в атмосферу. Существует еще примерно 80 подводных вулканов. Около 62 процентов действующих вулканов находятся по краям Тихого океана, причем три четверти их — на Западном побережье вдоль цепи островов, которые окаймляют тихоокеанское побережье Азии.

    Этот регион иногда называют «огненным кольцом», и раньше считали, что это как бы еще свежий шрам, след того, что в изначальные времена отсюда откололась часть Земли и образовала Луну. Подобное обстоятельство ныне не признается учеными, и огненное кольцо просто отмечает границу встречи Тихоокеанской плиты с другими плитами востока и запада. Еще 17 процентов вулканов расположены вдоль островов Индонезии, они отмечают границу Евразийской и Австралийской плит. Кроме того, 7 процентов вулканов находятся на линии восток-запад поперек Средиземноморья, отмечая границу между Евразийской и Африканской плитами.

    В западной истории лучше всего известно извержение Везувия в 79 году нашей эры. Везувий — это вулкан в 1,28 километра высотой, расположенный в 15 километрах к востоку от Неаполя. В древние времена его не считали вулканом, поскольку он не действовал на памяти людей.

    И вот 24 августа 79 года нашей эры он проснулся. Поток лавы, облака дыма и пара. На его южных склонах были полностью уничтожены города Помпеи и Геркуланум. Этот инцидент является олицетворением вулканического извержения, потому что он произошел в период расцвета Римской империи, потому что он был драматично, подробно описан Плинием Младшим (чей дядя Плиний Старший погиб во время извержения, пытаясь наблюдать бедствие вблизи), и потому, что раскопки, начатые в 1709 году, позволили воссоздать остановленную на ходу жизнь римской провинциальной общины. Однако в отношении разрушений это были пустяки.

    Вот, например, остров Исландия, лежащий на Среднеокеанском гребне, на границе между Североамериканской и Евразийской плитами, особенно вулканичен. Он действительно разрывается на части, поскольку дно Атлантического океана продолжает распираться (Кстати, слово «гейзер» — это исландский вклад в английский язык).

    В 1783 году начал извергаться вулкан Лаки, находящийся в центре Южной Исландии в 190 километрах к востоку от Рейкьявика, столицы Исландии. За два года лава покрыла площадь в 580 квадратных километров. Непосредственный ущерб от лавы был небольшим, но вулканический пепел распространился на большие расстояния, достигая даже Шотландии — на 800 километров к юго-востоку, и притом в концентрации, достаточной, чтобы повредить пахотные земли.

    В самой Исландии пепел и вредные испарения погубили три четверти домашнего скота и привели в негодность те небольшие площади возделываемой земли, что были на острове. В результате 10 000 человек, одна пятая тогдашнего населения острова, умерли от голода и болезней.

    Еще большее бедствие может произойти в густонаселенных районах. Обратимся к вулкану Тамборо, находящемуся на индонезийском острове Сумбава к востоку от Явы. В 1815 году Тамборо был высотой 4 километра. 7 апреля того же года сдерживаемая лава прорвалась и развалила верхний километр вулкана. Во время этого извержения из недр было исторгнуто примерно 150 кубических километров вулканического вещества, и это была самая большая масса, выброшенная в атмосферу в исторические времена (Возможно, это переоценка. Вероятно, верхний километр не вывалился полностью, так как большая часть его обрушилась в срединную дыру, образованную извергающейся лавой). Настоящий дождь камней и пепла убил 12 000 человек, а порча фермерских земель и гибель домашних животных привели к голоду и смерти на Сумбаве и соседнем острове Ломбок еще 80 000 человек.

    В западном полушарии наиболее ужасное извержение произошло 8 мая 1902 года. Вулкан Мон-Пеле на северо-западной оконечности Карибского острова Мартиника был известен тем, что время от времени как бы слегка икал, но в тот день он взметнулся в гигантском взрыве. Поднялось облако горячего газа, река лавы потекла по склонам вулкана с большой скоростью, все это обрушилось на город Сен-Пьер и полностью уничтожило его жителей. Погибло 38 000 человек. (Чудом выжил один, содержавшийся в подземной тюрьме.) Однако самое крупное извержение современности произошло на острове Кракатау. Это был небольшой остров площадью 45 квадратных километров, немного меньше Манхэттена, расположенный в Зондском проливе между островами Суматра и Ява, в 840 километрах западнее Тамборо.

    Кракатау не казался особенно опасным — было незначительное извержение в 1680 году. Однако 20 мая 1883 года появилась заметная активность, но она прошла сравнительно благополучно, хотя после нее слышался низкого тона несильный подземный гул. Затем в 10 часов утра 27 августа произошло мощное извержение, которое практически разрушило остров. Только в воздух было выброшено около 21 кубического километра вулканического вещества, это намного меньше, чем сомнительная цифра, которая относится к извержению Тамборо шестьдесят восемь лет до того, но то, что было выброшено здесь, было выброшено с намного большей силой.

    Пепел выпал на площади 800 000 квадратных километров и затемнил окружающий район на два с половиной дня. Пыль достигла стратосферы и распространилась по всей Земле, вызывая эффектные закаты на протяжении почти двух лет. Звук взрыва был слышен на расстоянии тысяч миль, по приблизительным подсчетам на 1/13 земного шара, а сила извержения была примерно в двадцать шесть раз больше, чем у самой мощной когда-либо взорванной водородной бомбы.

    Взрыв вызвал волну цунами (иначе говоря, «приливо-отливную волну»), которая окатила соседние острова и уже менее катастрофично прокатилась по всему океану. Жизнь всех видов на Кракатау была уничтожена, а волна цунами достигала высоты 36 метров, уничтожила 163 деревни и убила почти 40 000 человек.

    Кракатау назвали самым громким взрывом, слышанным на Земле в исторические времена, но, как оказалось, это было неверно. Был взрыв громче.

    В южной части Эгейского моря примерно в 230 километрах к юго-востоку от Афин есть остров Тира. Он имеет форму полумесяца, раскрытого на запад. Между его рогами находятся два маленьких острова. В целом это — круг, который очень похож на большой кратер вулкана, и так оно и есть. Остров Тира вулканического происхождения и перенес несколько извержений, а недавние раскопки свидетельствуют, что приблизительно в 1470 году до н. э. остров был значительно больше, чем сейчас, и был местом процветающей ветви минойской культуры, центром которой был остров Крит, в 105 километрах южнее Тиры.

    Примерно в тот год Тира и взорвалась, так же как Кракатау тридцать три века спустя, только с силой, в пять раз большей. Также и на Тире все было уничтожено, а возникшая волна цунами (достигшая в некоторых гаванях высоты 50 метров) с шумом обрушилась на Крит и произвела такие разрушения, что минойская цивилизация была уничтожена (Историкам было известно, что минойская цивилизация пришла в это время в упадок, но не знали почему, пока не были произведены раскопки на Тире). Должно быть, прошла почти тысяча лет, прежде чем развитие греческой цивилизации подняло культуру этих мест до уровня, который был достигнут до извержения.

    Без сомнения, взрыв Тиры не убил столько людей, как взрыв Кракатау или Тамборо, потому что Земля в те времена была намного менее плотно заселена. Однако взрыв Тиры имеет печальную отличительную черту, будучи единственным извержением вулкана, которое полностью уничтожило не город или группу городов, а целую цивилизацию.

    У взрыва Тиры есть еще одна довольно романтическая отличительная черта. Египтяне сохранили сведения об этом взрыве, впрочем, довольно путаные; греки узнали о нем от них, вероятно, в процессе изложения, искажая их еще больше (Великовский собрал легенды, касающиеся бедствий этого периода, — в их число он включает Исход, — и, если они вообще что-то значат, было бы гораздо логичнее отнести их к хаосу и опустошению, которые последовали за извержением Тиры, чем к невероятному вторжению планеты Венера). Эти рассказы появляются в двух диалогах Платона.

    Платон (427–347 до н. э.) не пытался придерживаться исторической правды, поскольку использовал рассказ для того, чтобы поучать. Очевидно, он не мог поверить, что великий город, о котором говорили египтяне, существовал в Эгейском море, где были только маленькие, не имеющие никакого значения острова. Поэтому он поместил его далеко на западе в Атлантическом океане и назвал уничтоженный город Атлантидой. В результате многие с тех пор стали считать Атлантический океан местом затонувшего континента. Открытие Телеграфного плато, по-видимому, укрепило уверенность в этом, но тщательное исследование Среднеокеанского гребня, конечно, убило эту идею.

    Предположение Зюсса о земляных мостах в океане и о подъеме и опускании обширных регионов суши еще больше воодушевило приверженцев «потерянного континента». Тут уже стали заявлять, что существовала не только Атлантида, но и аналогичные затонувшие континенты в Тихом и Индийском океанах, и дали им названия: Лемурия и My. Разумеется, Зюсс был не прав, во всяком случае он говорил о событиях, происходивших сотни миллионов лет назад, тогда как энтузиасты полагали, что океанское дно поднималось и опускалось всего десятки тысяч лет назад.

    Тектонические плиты положили всему этому конец. Ни в каком океане нет затонувших континентов, хотя, конечно, приверженцы потерянного континента так или иначе будут продолжать верить в свои глупости.

    До последнего времени ученые (включая меня) подозревали, что сообщение Платона было сплошной выдумкой ради морали. В этом мы оказались не правы. Некоторые из описаний Платона перекликаются с материалами раскопок Тиры, так что его рассказ, должно быть, основывался на действительном уничтожении города катастрофой, продолжавшейся целую ночь, но только города на маленьком острове, а не континента.

    Однако, как бы ни плохи были вулканы в наихудшем своем проявлении, есть еще один эффект тектонических плит, который может быть даже более губительным.

    Землетрясения

    Когда тектонические плиты разрываются на части или движутся вместе, это не обязательно происходит гладко. Действительно, можно ожидать определенного сопротивления от трения.

    Мы можем себе представить, что две плиты держатся вместе благодаря огромным давлениям, линия соприкосновения неровна, простирается в глубину на мили, и края плит из неровного камня. И вот скажем, подвижка плит имеет тенденцию толкать одну на север, в то время как другая неподвижна или толкается на юг. Или, может быть, одна плита поднимается, в то время как другая неподвижна или опускается.

    Огромное трение краев плит препятствует их движению, по крайней мере на время. Медленная циркуляция в мантии ломает плиты в некоторых местах на части. В других местах поднимается наверх расплавленный камень, углубляется морское дно, и это приводит к толчкам одной плиты о другую. Могут проходить годы, но рано или поздно трение преодолевается, и плиты, перемалывая края друг друга, движутся, возможно, только на сантиметры. или на метры. Давление в результате ослабевает, и плиты останавливаются на еще один неопределенный период времени до следующего заметного движения.

    Когда движение плит все же происходит, Земля вибрирует и происходит «землетрясение». В течение века две плиты взаимодействуют друг с другом довольно часто, и землетрясение, если происходит одновременно с этим или через короткое время, может быть не особенно сильным. Но плиты могут настолько крепко удерживаться друг другом, что в течение века ничего не происходит, затем они вдруг срываются, движутся за весь век сразу, и происходит сильнейшее землетрясение. Как обычно в подобных случаях, степень ущерба зависит от скорости изменения во времени. Такое же высвобождение энергии, распределенное на протяжении века, может не причинить никакого вреда, в то время как сконцентрированное в один короткий временной интервал может быть катастрофичным.

    Поскольку землетрясения, как и вулканы, связаны со сдвигами — местами, где взаимодействуют две плиты, — те же самые регионы, где находятся вулканы, подвержены и землетрясениям. Однако из двух этих явлений землетрясения более опасны. Извержения лавы случаются в определенных местах — из легко опознаваемых огромных вулканов. Обычно бедствия ограничены небольшим районом, лишь изредка возникают при этом цунами и происходит выброс большого количества пепла. Центры же землетрясений могут возникнуть в любом месте вдоль линии сдвига, которая может иметь в длину сотни миль.

    Вулканы обычно дают какое-нибудь предупреждение. Даже когда взрывается верхушка вулкана, этому предшествуют предварительный грохот, выделение дыма, появление пепла. В случае с Кракатау, например, появились признаки активности вулкана за три месяца до неожиданного взрыва. Землетрясения же происходят обычно без ясно различимого предупреждения.

    Извержения вулканов почти всегда связаны с определенным местом и почти всегда растянуты во времени настолько, что позволяет людям спастись бегством. Землетрясения обычно завершаются за пять минут и за эти пять минут могут нанести ущерб обширному району. Толчки земли сами по себе не опасны (хотя они могут быть ужасно пугающими), но они, как правило, разрушают дома, так что люди гибнут под руинами. В наше время землетрясения могут ломать плотины и стать причиной наводнений, разрушать линии электропередач и вызывать пожары, короче, наносить огромный ущерб недвижимости.

    Самое известное в западной новой истории землетрясение произошло 1 ноября 1755 года. Эпицентр его был около побережья Португалии, и это землетрясение, безусловно, было одним из трех-четырех наиболее сильных зарегистрированных землетрясений. Лиссабон, столица Португалии, принял на себя главный удар стихии, все дома в нижней части города были разрушены. Потом волна цунами, вызванная подводной частью землетрясения, ворвалась в гавань и довершила катастрофу. Погибло шестьдесят тысяч человек, город был разрушен так, словно на него сбросили водородную бомбу.

    Удар ощущался на площади 3,5 миллиона квадратных километров и нанес существенный ущерб не только в Португалии, но и в Марокко. Это был День всех святых, люди были в церквях, и по всей Европе те, кто был на богослужении, видели, как раскачивались и плясали в соборах паникадила.

    Наиболее известное в американской истории землетрясение произошло в Сан-Франциско. Этот город лежит на границе между Тихоокеанской и Североамериканской плитами. Эта граница проходит вдоль западной Калифорнии и называется сдвигом Сан-Андреас. По всей длине сдвига и его ответвлений землетрясения ощущаются довольно часто, обычно слабые, но иногда участки сдвига застывают на месте, а когда глубинные силы все-таки сдвигают их, результаты разрушительны.

    В 05.13 утра 18 апреля 1906 года сдвиг дал о себе знать в Сан-Франциско, и здания рухнули. Начался пожар, который продолжался в течение трех дней, пока дождь не потушил его. Четыре квадратных мили центра города были полностью разрушены. Около семисот человек погибли, а четверть миллиона осталась без крова. Ущерб недвижимости оценивался в полмиллиарда долларов.

    В результате изучения этого землетрясения американским геологом Гарри Филдингом Ридом (1859–1944) было установлено, что произошло скольжение вдоль сдвига. Грунт одного края сдвига Сан-Андреас продвинулся вдоль относительно другого на 6 метров. Это исследование привело к современному пониманию землетрясений, хотя только полвека спустя после разработки учения о тектонических плитах была понята сила, вызывающая землетрясения.

    Значительность этого землетрясения не должен исказить тот факт, что смертей было относительно немного, но ведь и город тогда был по числу жителей не так велик. По числу погибших были в западном полушарии и более значительные землетрясения.

    В 1970 году на курортный городок Янгей в Перу, в 320 километрах от столицы страны Лимы, землетрясение обрушило воду, накопившуюся за земляным валом. Возникшее наводнение унесло 70 000 жизней.

    Более значительный ущерб принесло землетрясение на другой стороне Тихоокеанской плиты, на Дальнем Востоке, где плотность населения очень велика и где строительство имело тенденцию быть настолько непрочным, что дома рушились при первом же сильном содрогании земли. 1 сентября 1923 года произошло очень сильное землетрясение, эпицентр которого пришелся на юго-восток столичного района Японии: Токио-Иокогама. Токио в 1923 году был намного крупнее Сан-Франциско 1906 года; в районе Токио-Иокогама проживало тогда около двух миллионов человек.

    Землетрясение произошло незадолго до полуночи, и 575 000 строений тотчас были уничтожены. От землетрясения и пожара, который последовал, погибло более 140 000 тысяч человек, материальный ущерб достиг почти трех миллиардов долларов (в ценах того времени). Это было по разрушениям, наверное, самое «дорогое» из всех до того случившихся землетрясений.

    И все же, с точки зрения смертельных потерь, это было не самое худшее землетрясение. 23 января 1556 года в центральном Китае, в провинции Шенси при землетрясении погибло, по сообщениям того времени, 830 000 человек. Конечно, мы не можем полностью доверять этим старым сообщениям, но 28 июля 1976 года подобное разрушительное землетрясение произошло в Китае к югу от Пекина. Города Тяньцзинь и Таншань были сровнены с землей. Китай тогда не представил официальных данных о потерях и ущербе, но по неофициальным данным погибло 665 000 человек и 779 000 получили ранения1.

    Что же сказать о землетрясениях и вулканах в целом? Они, безусловно, бедственны, но они строго локальны. За миллиарды лет от появления жизни вулканы и землетрясения никогда и близко не подходили к тому, чтобы стать окончательными разрушителями жизни. Их также нельзя считать и уничтожителями цивилизации. То, что взрыв Тиры был мощным фактором в падении минойской цивилизации, несомненно, но цивилизации в те времена были весьма невелики. Минойская цивилизация ограничивалась островом Крит и еще некоторыми островами в Эгейском море и не имела сильного влияния на греческую часть материка.

    Можем ли мы быть уверены, что все это останется без изменений, что тектонические нарушения покоя не станут катастрофическими в будущем, даже если они оставались такими в прошлом? В 1976 году, например, было около пятидесяти несущих гибель людям землетрясений, а некоторые из них были просто чудовищны (А вот данные за последние годы: 1996 год — 21 землетрясение силой 7 баллов и выше, 1997 — 17. И во всех гибли люди. В августе 1999 года землетрясение в Турции унесло десятки тысяч жизней). Не развалится ли Земля на части по какой-нибудь причине?

    Вовсе нет, все это только кажется таким ужасным. Что же касается фактов, то 1906 год (год землетрясения в Сан-Франциско) видел бедственных землетрясений больше, чем 1976-й, но в 1906 году люди так о них не переживали. Почему же теперь землетрясения вызывают у них большее волнение?

    Во-первых, после Второй мировой войны колоссальное развитие получили средства связи. Совсем не так давно обширные районы Азии, Африки и даже Южной Америки были почти недосягаемы для нас. И если в отдаленных районах происходило землетрясение, то лишь слабые отголоски о нем достигали широкой общественности. Сейчас каждое землетрясение в деталях описывается на первых страницах газет. Результаты бедствия можно даже увидеть по телевидению.

    Во-вторых, возрос наш собственный интерес. Мы уже больше не изолированы и не варимся в собственном соку. Некоторое время назад, если мы и слышали подробности о землетрясениях на других континентах, мы просто отмахивались от них. Что происходит в далеких частях мира, было для нас не важно. Теперь же у нас окрепло понятие, что происходящее в любом уголке мира имеет влияние на нас, и мы больше обращаем внимания на происходящие события, и больше растет наше беспокойство.

    В-третьих, население мира выросло. За последние пятьдесят лет оно удвоилось и сейчас насчитывает четыре миллиарда человек (Книга написана в 1979 году. К началу XXI века эта цифра перевалила за шесть миллиардов). Землетрясение, от которого в 1923 году в Токио погибло 140 000 человек, если бы оно повторилось теперь, унесло бы, возможно, миллион жизней. Прикинем, что население Лос-Анджелеса в 1900 году было 100 000 человек, сейчас — 3 миллиона. Землетрясение, нанеси оно сейчас свой удар по Лос-Анджелесу, вполне вероятно, погубит в тридцать раз больше людей, чем погубило в 1900 году. И это не означает, что землетрясение оказалось в тридцать раз сильнее, просто количество людей, попавших в зону бедствия, увеличилось в тридцать раз.

    Например, наиболее сильное зарегистрированное землетрясение в истории Соединенных Штатов имело место не в Калифорнии, а в Миссури. Эпицентр землетрясения был около Нью-Мадрида на реке Миссисипи на юго-востоке штата, и оно было настолько сильным, что течение Миссисипи изменилось. Однако произошло это 15 декабря 1811 года, и район этот был тогда еще очень слабо заселен. Не было зарегистрировано ни одного несчастного случая. Точно такое же землетрясение в том же самом месте сегодня, несомненно, погубит сотни людей. А если произойдет несколькими километрами выше по реке, унесет десятки тысяч жизней.

    Наконец, мы должны помнить, что, собственно, убивает людей при землетрясениях — это сооружения. Падающие здания хоронят людей, прорванные плотины — топят, пожары, возникающие от повреждения кабелей, — сжигают. Сооружения людей умножились с годами и стали более сложными и дорогими. И это не только увеличивает человеческие потери, но и значительно увеличивает ущерб недвижимости.

    Тектоническое будущее

    Можно ожидать, как следует из сказанного, что с каждым десятилетием смертность от землетрясений и извержений вулканов будет повышаться, а разрушений будет становиться больше, даже если плиты не будут ничего делать, а только продолжать двигаться, как на протяжении уже нескольких миллиардов лет. Мы можем также ожидать, что люди, отмечая больше смертей и разрушений, будут уверены, что положение становится хуже и Земля прямо ходит ходуном.

    Но это не так! Даже если и впрямь кажется, что положение ухудшается, то дело не в тектонических изменениях, а в человеческих. Конечно, всегда есть кто-нибудь, кто по каким-либо причинам стремится предсказать неизбежный конец света. В более ранние времена такое предсказание обычно вдохновлялось той или иной частью Библии и часто рассматривалось как следствие человеческой греховности. В наше время за причину гибели принимается некоторый материальный аспект Вселенной.

    Например, в 1974 году была опубликована книга Джона Гриббина и Стефана Плагемана под заглавием «Эффект Юпитера», и я написал к этой книге предисловие, потому что считал, что это любопытная книга. Гриббин и Плагеман, исходя из предположения приливо-отливного влияния планет на вспышки на Солнце, подсчитали приливо-отливный эффект на него нескольких планет. Вспышки на Солнце — источник так называемого «солнечного ветра», который, видимо, влияет на Землю. Они задались вопросом, не может ли это, хотя и очень небольшое, влияние добавить что-то к давлениям, вызывающим различные сдвиги. Например, если сдвиг Сан-Андреас был уже на грани подвижки, связанной с опасным землетрясением, эффект солнечного ветра мог бы добавить последнюю каплю и ускорить подвижку. Гриббин и Плагеман предсказывали, что в 1982 году планеты расположатся таким образом, что их приливо-отливный эффект на Солнце будет больше, чем обычно. В таком случае, если сдвиг Сан-Андреас близок к тому, чтобы совершить подвижку, 1982 год мог оказаться подходящим годом для этого.

    Но не следует забывать, что эта книга прежде всего предположительна. А во-вторых, даже если бы упомянутая цепь событий имела место, — если расположение планет и произвело бы необычно большой приливо-отливный эффект на Солнце, а Солнце увеличило число и интенсивность вспышек, это бы интенсифицировало солнечный ветер, который бы слегка подтолкнул сдвиг Сан-Андреас, — все, что произошло бы — это землетрясение, которое все равно бы произошло, возможно, в следующем году, если бы его не подтолкнули в этом. Это могло бы быть сильное землетрясение, но оно было бы не сильнее, чем без подталкивания. Оно могло бы нанести огромный ущерб, но не из-за своей силы, а только из-за того, что люди за время, прошедшее с землетрясения 1906 года, гораздо плотнее заселили Калифорнию и застроили ее своими сооружениями.

    Тем не менее книга была неправильно понята, и возник лихорадочный страх, что вот в 1982 году «выстроятся в ряд» планеты и в результате своего астрологического влияния вызовут на Земле различные ужасные бедствия, наименьшее из которых приведет к сползанию Калифорнии в море. Глупости! (Поистине так, ведь мы благополучно пережили этот «парад планет», не ощутив никакого влияния ни на нас самих, ни на окружающую среду. А землетрясение все равно произошло, но несколько позже, как было отмечено выше, в 1989 году. Последний «парад планет» состоялся 5 мая 2000 года) Точка зрения о сползании Калифорнии в море представляет интерес для несведущих людей, по-видимому, не без причины. Отчасти, должно быть, потому, что они имеют неясное представление о сдвиге, проходящем по западному краю Калифорнии (который существует), и что, возможно, происходит перемещение вдоль сдвига (которое, возможно, и впрямь происходит). Однако перемещение это не превышает нескольких метров, причем края сдвига не разойдутся. В результате, конечно будет нанесен ущерб, но Калифорния в целом останется на месте.

    Разумеется, можно предположить, что в будущем произойдет расширение вдоль сдвига; вещество хлынет наверх и раздвинет края сдвига, создавая впадину, которую может заполнить Тихий океан. Западный осколок Калифорнии отодвинется тогда от остальной Северной Америки, образуя длинный полуостров, нечто вроде нынешней Нижней Калифорнии, или, может быть, даже длинный остров. Но для того чтобы это произошло, потребовались бы миллионы лет, и процесс не сопровождался бы ничем хуже землетрясений и вулканической деятельности такого же вида, которая существует сейчас.

    Но продолжим мысль о сползании Калифорнии в море. Существует астероид Икар, открытый в 1948 году Бааде. Орбита этого астероида весьма эксцентрична. На одном конце орбиты он проходит через зону астероидов, на другом ее конце — оказывается ближе к Солнцу, чем Меркурий. Примерно в срединной части орбиты Икар проходит довольно близко к орбите Земли, так что является «пасущимся у Земли».

    Когда Икар и Земля оказываются в определенных точках на орбитах, их разделяет только 6,4 миллиона километров. Но даже на таком расстоянии, которое почти в семнадцать раз больше расстояния до Луны, эффект Икара на Землю нулевой. Тем не менее при недавнем наиболее близком подходе Икара можно было услышать предупреждения о сползании Калифорнии в море.

    На самом деле опасность вулканической деятельности и землетрясений со временем может уменьшаться. Если, как утверждалось ранее, Земля в конце концов потеряет свое внутреннее тепло, ведущую силу подвижки тектонических плит, вулканическая деятельность и землетрясения вообще исчезнут. Однако никакое значительное ослабление этих явлений, безусловно, не произойдет до того, как для Солнца настанет время красного гиганта.

    Весьма важен тот факт, что люди уже пытаются уменьшить опасность. В случае с вулканами это относительно просто. Осмотрительно сторониться этих объектов, внимательно следить за появлением предвестников извержения, которые появляются почти во всех случаях и помогают предотвратить ущерб и гибель. С землетрясениями труднее, хотя они тоже подают знаки. Когда одна из сторон сдвига добирается до точки скольжения о другую, то, прежде чем произойдет толчок, кое-какие незначительные изменения в грунте все-таки имеют место, их нужно только тем или иным способом обнаружить и измерить.

    Изменения в камне, которые начинают появляться прямо перед землетрясением, включают в себя уменьшение электрического сопротивления, взгорбливание грунта и увеличение потока воды в нижних прослойках, образующихся из-за постепенного растягивания камня. Увеличение потоков может быть обнаружено благодаря увеличению концентрации радиоактивных газов в воздухе, таких, как радон, — газов, которые до тех пор были заключены в камне. Происходит также повышение уровня воды в колодцах.

    Довольно странно, что одним из верных признаков неизбежного землетрясения является общее изменение в поведении животных. Обычно спокойные лошади ржут и носятся, собаки воют, рыбы прыгают. Такие животные, как змеи и крысы, обычно прячущиеся в своих норах, неожиданно попадаются на глаза. Шимпанзе меньше времени проводят на деревьях и больше на земле. Из этого не следует, что животные обладают способностью предсказывать будущее или обладают неизвестными чувствами, которыми не обладаем мы. Они живут в более тесном контакте с окружающей природой, и их жизнь, полная опасностей, заставляет обращать внимание на почти не воспринимаемые изменения, что мы делаем не всегда. Мелкая дрожь, которая предшествует настоящему толчку, настораживает их; незнакомые звуки, исходящие от трения краев сдвига, делают то же самое.

    В Китае, где землетрясения довольно часты и разрушительнее, чем в Соединенных Штатах, предпринимаются большие усилия, чтобы предсказывать землетрясения. Население призывают обращать внимание на всякие изменения вокруг. О странном поведении животных, так же как и об изменениях уровня колодезной воды, возникновении странных звуков из земли и даже о необъяснимом отслаивании краски сразу же докладывается властям. Таким образом китайцы добиваются предупреждения о разрушительных землетрясениях за день или за два, и им удалось спасти много жизней — особенно, говорят, при землетрясении в Северо-Восточном Китае 4 февраля 1975 года. (С другой стороны, они, кажется, были застигнуты врасплох страшным землетрясением 28 июля 1976 года.) В Соединенных Штатах попытки в предсказании землетрясений также становятся более серьезными. Наша сила — высокие технологии, и мы можем привлечь их для обнаружения слабых изменений в локальных магнитных, электрических и гравитационных полях, так же как и регистрировать повседневные изменения в уровне и химическом составе колодезной воды, производить пробы окружающего воздуха.

    Однако необходимо определять место, время и силу предсказываемого землетрясения очень точно, потому что ложная тревога может дорого обойтись. Быстрая эвакуация может внести больше экономической сумятицы и личного дискомфорта, чем незначительное землетрясение, и если эвакуация окажется ненужной, реакция людей будет неблагоприятной. При следующем предупреждении люди откажутся эвакуироваться, но землетрясение может нанести удар.

    Чтобы предсказать землетрясение с приемлемой точностью, вероятно, надо произвести разнообразные измерения и взвесить относительную важность их изменения. Можно представить себе дюжину стрелок, измеряющих различные свойства, вводимые в компьютер, который бы оценивал все воздействия и выдавал общий показатель, а по достижении определенной критической точки давал бы сигнал на эвакуацию.

    Эвакуация означала бы уменьшение ущерба, но должны ли мы удовлетвориться этим? Нельзя ли полностью предотвратить землетрясение? По-видимому, нет практического способа изменить подземный камень, но подземная вода — другое дело. Если просверлить глубокие колодцы на расстоянии нескольких километров по линии сдвига, и если вода под напором заполнит их, если позволить ей потом отхлынуть — так можно ослабить подземное давление и таким образом избавиться от землетрясения. Конечно, вода может сделать больше, чем просто ослабить давление. Она может «смазать» породы и способствовать скольжению с более частыми интервалами. Серия малых землетрясений, которые не причиняют вреда, даже в совокупности гораздо лучше, чем одно большое землетрясение.

    И хотя легче с упреждением за несколько дней предсказать извержение вулкана, чем предсказать землетрясение, было бы труднее и опаснее пытаться высвободить вулканическое давление, чем высвободить давление землетрясения. Все же не будет фантазией — представить, что недействующие вулканы могут быть пробурены таким образом, чтобы горячая лава могла подниматься по открытому центральному проходу, не создавая давления на взрывную точку, или у таких вулканов могут быть прорезаны новые каналы ближе к уровню земли в направлениях, которые не могут вызвать для людей особенно бедственных последствий.

    Подводя итог, по-видимому, разумно предположить, что Земля будет оставаться достаточно стабильной во время пребывания Солнца в главной последовательности и что жизнь не будет находиться под угрозой из-за какого-нибудь содрогания Земли или какого-нибудь неблагоприятного движения ее коры. А что касается локальных бедствий — извержения вулканов и землетрясения, то, наверное, существует возможность снизить степень опасности.

    10. Изменение погоды

    Времена года

    Даже если мы предположим, что состояние Солнца абсолютно надежно и что Земля абсолютно стабильна, вокруг нас существуют периодические изменения, которые подчас неблагоприятно влияют на наши способности, в том числе на главную способность живого существа — оставаться живым. Из-за того, что Земля нагревается Солнцем неравномерно благодаря ее сферической форме, ее слегка изменяющемуся расстоянию от Солнца при движении по эллиптической орбите и тому факту, что ее ось наклонена, средняя температура во всяком определенном месте на Земле повышается и падает в течение года, что выражается в смене времен года.

    В умеренных зонах у нас легко различаются теплое лето и холодная зима, с волнами тепла в первом случае и снежными заносами во втором. Между ними промежуточные времена года — весна и осень. Различия во временах года менее заметны, если мы передвинемся к экватору, по крайней мере в отношении температур. Но даже в тропических регионах, где разница температур в течение года невелика и стоит вечное лето, вероятно наличие сезонов дождей и засухи.

    Различие времен года более заметно, когда мы движемся к полюсам. Зимы становятся длиннее и холоднее, солнце — ниже, а лето — короче и прохладнее. Наконец, на самих полюсах существуют легендарные дни и ночи по полгода, когда солнце скользит прямо по горизонту или, соответственно, на шесть месяцев скрывается за ним.

    Естественно, времена года, как известно, не плавно изменяются по температурам. Существуют экстремальные значения, которые иногда достигают бедственных величин. Существуют также периоды, когда в течение продолжительного времени дождей меньше, чем обычно, и в результате наступает засуха, при которой гибнет урожай. А поскольку население в сельскохозяйственных районах имеет тенденцию к росту до лимита, который может поддерживаться в годы хорошего урожая, за засухой случается голод.

    В доиндустриальное время, когда перевозка на большие расстояния была затруднительна, голод в одной провинции мог развиваться до крайности, несмотря на то, что соседние провинции имели излишки продуктов. Даже в современных условиях время от времени голодали миллионы. В 1877 и 1878 годах в Китае умерли от голода 9,5 миллионов человек, после Первой мировой войны в Советском Союзе умерло от голода 5 миллионнов. Голод должен теперь стать меньшей проблемой, потому что возможно, например, в случае необходимости перевезти на кораблях американскую пшеницу в Индию. Тем не менее проблема все-таки есть. Между 1968 и 1973 годами в Сахеле, той части Африки, которая лежит к югу от пустыни Сахара, стояла засуха, и четверть миллиона людей умерло голодной смертью, а еще миллионы были доведены до крайней степени истощения.

    И, напротив, бывают периоды, когда дождей выпадает больше нормы, и в самом худшем случае быстрое нарушение водного режима вызывает наводнение. Они особенно губительны на равнинных, прилегающих к рекам землях. Так, в Китае река Хуанхэ, или Желтая река (также называемая «горе Китая»), не раз выходила из берегов и губила сотни тысяч людей. Наводнение на Хуанхэ в 1931 году утопило около 3,7 миллиона человек.

    Иногда разлив реки наносит не столь большой ущерб, как неистовый ветер, сопровождающий ливни. В ураганах, циклонах, тайфунах и так далее (в разных районах по-разному называют широкого захвата быстро вращающиеся ветры) сочетание ветра и воды может быть смертельным.

    Особенно серьезный ущерб наносится густонаселенной низменной дельте реки Ганг в Бангладеш, где 13 ноября 1970 года до миллиона человек погибло под бешеными ударами циклона, который загнал море вглубь континента. Четыре других подобных циклона в предыдущем десятилетии унесли в Бангладеш жизни по крайней мере десяти тысяч человек каждый.

    Зимой, там, где ветер при более низкой температуре сочетается со снегом и образуется метель, смертей меньше, наверное, только потому, что такие явления больше присущи полярным и приполярным районам, где населения мало. Тем не менее 11–14 марта 1888 года трехдневная снежная буря в северо-восточных штатах США унесла жизни 4000 человек, а буря с градом 30 апреля этого же года убила 246 человек в Морадабаде, в Индии.

    Но самая драматичная буря — это торнадо, он представляет собой плотно двигающиеся со скоростью до 480 километров в час спиральные ветры. Они могут буквально все уничтожить на своем пути, единственная их милость — это кратковременность и неширокий охват. В Соединенных Штатах возникает до тысячи таких торнадо в год, большей частью в центральных районах, а общее количество погибших незначительно. В 1925 году от торнадо в Соединенных Штатах погибло 689 человек.

    Однако эти и остальные погодные ситуации могут быть квалифицированы только как бедствия, но не катастрофы. Ни одно из них не угрожает жизни в целом, не угрожает даже цивилизации. Жизнь приспособлена к временам года. Существуют организмы, адаптировавшиеся к тропикам, пустыне, тундре, к тропическим лесам, и жизнь может продолжать существование, хотя может и изрядно пострадать в этих экстремальных ситуациях.

    А не могут ли времена года, изменив свою природу, стереть с лица Земли большую часть жизни или даже всю ее? Скажем, посредством затянувшейся зимы или затянувшегося засушливого времени года? Не может ли Земля превратиться в планетарную Сахару или в планетарную Гренландию? Исходя из нашего опыта в исторические времена, есть искушение сказать «нет».

    Происходили слабые колебания маятника. Например, во время минимума Мондера в семнадцатом веке средняя температура была ниже нормы, но недостаточно низкая для того, чтобы подвергнуть жизнь опасности. Могут быть подряд засушливые лета или мягкие зимы, штормовые весны или дождливые осени, но ход событий возвращается в свое русло, и ни одно из них не становится по-настоящему непереносимым. Пожалуй самую серьезную попытку изменения климата последние века Земля испытала в 1816 году после сильнейщего извержения вулкана Тамборо. В стратосферу было выброшено столько пыли, что значительное количество солнечной радиации было отражено ею обратно в космос и не достигло земной поверхности. Эффект был таков что казалось будто Солнце стало более тусклым и холодным. В результате 1816 год стал известен как «год без лета» В Новой Англии шел снег по крайней мере один раз каждый месяц, включая июль и август, в течение всего года.

    Ясно что если бы это продолжалось из года в год без перерыва, результат был бы в конечном счете катастрофичным. Но пыль осела, и климат вошел в свой обычный ритм.

    Однако обратимся к доисторическим временам. Был ли когда-нибудь период, когда климат был несомненно более экстремальным, чем в наши дни? Был ли он достаточно экстремальным, чтобы приблизиться к катастрофическому? Естественно, он никогда не мог быть достаточно экстремальным, чтобы покончить со всей жизнью, поскольку живое продолжает в изобилии населять Землю, но не мог ли он быть настолько экстремальным, чтобы вызвать такие проблемы, что стань он еще хоть чуть-чуть хуже, и это бы серьезно угрожало жизни?

    Первый намек на возможность такой экстремальности появился в концe восемнадцатого века, когда складывалась современная геология. Некоторые аспекты земной поверхности начали казаться озадачивающими и парадоксальными в свете новой геологии. То тут, то там обнаруживались на местности крупные валуны, не похожие на общий скальный фон. В других местах обнаруживались неподходящие отложения песка и гравия. Естественным объяснением того времени было то, что нарушения привнесены Ноевым потопом.

    Однако во многих местах обнаженные скалы были изборождены параллельными царапинами, древними выветренными царапинами, которые могли быть следствием скобления камня по камню. Но в этом случае что-то должно было прижимать один камень к другому с большой силой, да еще иметь силу, чтобы двигать один камень по отношению к другому. Одна вода такого сделать не могла, но если не вода, то что же?

    В 20-х годах XIX века два швейцарских геолога, Иоганн X. Шарпантье (1786–1855) и И. Венец занялись этим вопросом. Они были хорошо знакомы со Швейцарскими Альпами, они знали, что когда летом тают и несколько отступают ледники, они оставляют после себя отложения песка и гравия. Не перенесен ли этот песок и гравий вниз по склонам горы и не выполнил ли эту работу ледник, потому что он движется, как медленная, очень медленная река? А не могут ли ледники переносить большие камни точно так же, как песок и гравий? И если ледники когда-то были намного больше, чем сейчас, не могли ли они скоблить валунами по другим камням, делая царапины? А если ледники несли песок, гравий, гальку и валуны намного дальше тех пределов, до которых эти ледники сейчас простираются, не могли ли они, отступив, оставить свою ношу в окружении, к которому она не принадлежала?

    Шарпантье и Венец заявили, что именно это и произошло. Они предположили, что альпийские ледники в давно прошедшие времена были намного мощнее и протяженнее и что отдельные валуны перенесены в Северную Швейцарию огромными ледниками, которые в прошлом простирались сюда от южных гор, и остались там, когда ледники постепенно уменьшились и отступили.

    Поначалу теория Шарпантье-Венеца не была воспринята учеными всерьез, поскольку они сомневались, что ледники могут течь, как реки. Одним из сомневающихся был молодой друг Шарпантье, швейцарский натуралист Жан Л. Р. Агассиз (1807–1873). Агассиз решил исследовать ледники, чтобы установить, действительно ли они текут. В 1839 году он вбил колья по 6 метров в лед и к лету 1841 года увидел, что они продвинулись на существенное расстояние. Более того, те колья, что были в середине ледника, продвинулись значительно дальше, чем те, что были по краям, где лед двигался медленнее из-за трения с горным склоном. То, что было прямой линией кольев, превратилось в неглубокую букву U, открытая часть которой была направлена на вершину горы. Это показывало, что лед не двигался цельным куском. Налицо было своего рода пластичное течение, когда вес верхней части льда толкал его нижнюю часть, медленно выдавливая ее, подобной зубной пасте из тубы.

    В конце концов Агассиз объездил всю Европу и Америку в поисках признаков скобления ледником камней. Он нашел обломки горных пород в неожиданных местах, которые отмечали продвижение ледников и их отступление. Он нашел впадины «котловины», которые имели много признаков того, что их могли выкопать ледники. Некоторые из них были заполнены водой, и Великие озера Северной Америки являются примером особенно больших заполненных водой котловин.

    Агассиз сделал вывод, что время обширных ледников в Альпах было также временем обширных пластов льда во многих местах. То есть имел место «ледниковый период», когда пласты льда, подобные тем, что сейчас покрывают Гренландию, покрывали большие районы Северной Америки и Евразии.

    С тех пор были проведены тщательные геологические исследования, и выяснилось, что погода, такая, какова она сегодня, несомненно далека от погоды, типичной для определенных времен в прошлом. Ледники в течение последнего миллиона лет несколько раз распространялись из полярных регионов на юг и отступали, а потом наступали снова. Между периодами оледенения были «межледниковые периоды», и сейчас мы живем в одном из них, но не установившемся полностью. Огромная ледовая шапка Гренландии сохранилась еще как живое напоминание о недавнем периоде оледенения.

    Что двигает ледники?

    Ледниковый период последнего миллиона лет, очевидно, не положил конец жизни на планете. Он не положил конец даже человеческой жизни. Homo sapiens и его человекообразные предки прожили весь ледниковый период последнего миллиона лет без какого-либо заметного перерыва в эволюции и развитии.

    Тем не менее мы вправе поинтересоваться, — не ждет ли нас впереди еще один ледниковый период, или мы живем еще в «хвосте» прошедшего? Даже если ледниковый период не означает конец жизни или хотя бы человечества и не катастрофичен в этом смысле, то мысль, что почти вся Канада и северная часть Соединенных Штатов покрыта ледником в милю толщиной (не говоря о покрытых льдом аналогичных частях Европы и Азии), представляется достаточно неприятной.

    Чтобы ответить на вопрос, не могут ли ледники вернуться, сначала было бы полезно узнать, что вызывает такие ледниковые периоды. И перед тем, как попытаться это сделать, следует понять, что не так много и надо для того, чтобы привести в движение ледники, нет необходимости отыскивать большие и невозможные изменения.

    Снег каждую зиму падает на большую часть Северной Америки и Евразии, и эти регионы остаются покрытыми замерзшей водой почти так, как если бы возвратился ледниковый период. Снежный покров, однако, составляет от нескольких сантиметров до пары метров, и за лето весь тает. В общем существует баланс, и в среднем летом тает столько снега, сколько выпало зимой. Это обычные изменения.

    Но, предположим, что-то случилось, и лета стали в среднем немного холоднее, совсем ненамного, может быть, на два-три градуса. Этого будет недостаточно для того чтобы заметить. И, конечно, не будем считать это непрерывным изменением, то есть будут лета потеплее и лета похолоднее с обычным произвольным их распределением, но лета потеплее будут менее частыми, так что в среднем снег, который выпадает зимой, не совсем весь растает летом. Происходит суммарное увеличение из года в год снежного покрова. Это будет очень медленное увеличение, и оно будет заметно в северном полярном и приполярном регионах, а также в высокогорных местностях. Накапливающийся снег превратится в лед, и ледники, которые существуют в полярных регионах и в южных широтах на больших высотах, расширятся за зиму и меньше сократятся за лето. Они будут расти из года в год.

    Изменение питало бы и само себя. Лед отражает свет более эффективно, чем обнаженный камень или почва. Собственно лед отражает порядка 90 процентов света, который падает на него, в то время как почва отражает менее 10 процентов. Это означает, что когда ледовый покров расширяется, больше солнечного света отражается и меньше поглощается. Средняя температура понизится немного больше, лета станут все же немного прохладнее, ледовое покрытие будет расширяться быстрее. И вот, в результате очень незначительного первоначального охлаждающего действия ледники станут расти, превращаться в толстые ледяные пласты, которые медленно, год за годом, станут продвигаться, пока наконец не покроют обширные пространства Земли.

    И вот ледниковый период установился, ледники продвинулись далеко на юг; тем не менее достаточно очень маленького изменения в противоположную сторону, своеобразного «спускового крючка», и он может инициировать общее отступление. Если средняя температура лета вырастет на два-три градуса и на продолжительный период, то снега летом растает больше, чем выпало зимой, и лед станет из года в год отступать. С его отступлением Земля будет отражать несколько меньше света, а поглощать — несколько больше. Это сделает лета еще теплее и отступление ледника будет ускорено.

    Нам остается установить, что это за «спусковой крючок», который инициирует продвижение ледника, а потом и его отступление. Это сделать легко. Однако существует слишком много возможных «спусковых крючков», и трудность задачи состоит в том, чтобы сделать выбор. Например, причина изменения может быть связана с самим Солнцем. Ранее я упоминал о том, что минимум Мондера приходится на то время, когда погода на Земле была в общем прохладной. Это время и впрямь иногда называют «маленьким ледниковым периодом».

    Если существует причинная связь, если минимумы Мондера охлаждают Землю, тогда, примерно каждые сто тысяч лет Солнце проходит по протяженному минимуму Мондера, который длится не несколько десятков лет, а несколько тысячелетий. Земля может быть тогда достаточно холодной, чтобы инициировать и поддерживать ледниковый период. Когда Солнце наконец начнет снова покрываться пятнами и испытывать только короткие минимумы Мондера, Земля слегка согреется, и начнется отступление ледников.

    Возможно, так оно и есть, но у нас нет свидетельств. Может быть, дальнейшее изучение солнечных нейтрино, и вопроса почему их так мало, поможет нам достаточно узнать о том, что происходит внутри Солнца, и позволит понять запутанность цикла солнечных пятен. Мы могли бы тогда сочетать вариации солнечных пятен с периодами оледенения и были бы способны предсказать, наступит ли следующий период оледенения и когда.

    Но причиной может бы быть вовсе не Солнце, которое будет сиять с прежним постоянством. Причиной может быть природа пространства между Землей и Солнцем.

    Я объяснял ранее, что существует лишь невероятно малый шанс столкновения со звездой или любым другим небольшим объектом из межзвездного пространства как самого Солнца, так и Земли. Существуют, однако, блуждающие облака пыли и газа между звездами в нашей Галактике (также и в других галактиках, подобных ей), и Солнце, двигаясь по своей орбите вокруг галактического центра, вполне может пройти через некоторые из этих облаков.

    Облака не густые по обычным стандартам. Они не отравят ни нашей атмосферы, ни нас. Сами по себе они даже не были бы особенно заметны обычному наблюдателю, не говоря уже о том, что не были бы, конечно, катастрофическими. Ученый НАСА (Национальное управление по аэронавтике и исследованию космического пространства в Соединенных Штатах) Диксон М. Батлер даже предположил в 1978 году, что наша Солнечная система прошла за время своего существования по крайней мере дюжину довольно обширных облаков, и, если уж на то пошло, он мог ошибиться в меньшую сторону.

    Почти все подобные облака состоят из водорода и гелия, которые никак не воздействуют на нас. Однако около 1 процента массы таких облаков составляют пыль, зерна льда и камня. Каждое из этих зерен отражает, поглощает и вновь излучает солнечный свет, так что меньше солнечного света пробивает себе путь мимо зерен, меньше его попадает и на поверхность Земли.

    Зерна могут не так уж сильно загораживать направленный на Землю солнечный свет. Солнце может для нас выглядеть так же ярко, даже звезды могут не выглядеть по-иному. Тем не менее особенно плотное облако могло бы задержать некоторое количество света, вполне достаточное, чтобы запустить механизм наступления ледникового периода. Смещаясь в сторону, облако способно послужить причиной отступления ледника.

    Возможно, в последний миллион лет Солнечная система пересекала регион облаков Галактики, и всякий раз, когда мы проходили через особенно густое облако, которое задерживало достаточное количество света, начинался ледниковый период, и, когда мы оставляли облако позади, ледники отступали. Перед последним ледниковым периодом в миллион лет был период 250 миллионов лет, во время которого не было ледниковых периодов, и, по-видимому, Солнечная система в течение этого периода проходила через чистые регионы Галактики. Перед этим был 1-й ледниковый период, наводящий на мысль о Пангее.

    Возможно, каждые 200 или 250 миллионов лет существуют серии ледниковых периодов. Поскольку это не очень отличается от периода полного оборота Солнечной системы вокруг галактического центра, может быть, каждый оборот мы проходим через тот же самый облачный регион. Если мы теперь прошли через этот регион полностью, тогда, возможно, периодов оледенения не будет четверть миллиарда лет. Если же нет, тогда еще один — или целая серия их — должен наступить гораздо раньше этого срока.

    Например, группа французских астрономов в 1978 году представила свидетельство о возможности еще одного межзвездного облака, и как раз впереди. Солнечная система приближается к нему со скоростью около 20 километров в секунду и может достичь краев облака примерно через 50 000 лет.

    Но Солнце непосредственно или облака межзвездной пыли могут не быть истинным «спусковым крючком». Сама Земля или, скорее, ее атмосфера, может послужить таким механизмом. Солнечной радиации приходится преодолевать атмосферу, и это способно дать свой эффект.

    Примем во внимание, что солнечная радиация достигает Земли главным образом в форме видимого света. Пик солнечной радиации приходится на длины волн видимого света, который легко проходит сквозь атмосферу. Другие формы радиации — ультрафиолет и рентгеновские лучи, которые Солнце производит не в таком изобилии, атмосферой задерживаются.

    В отсутствие Солнца, ночью, поверхность Земли излучает тепло в открытый космос. Это происходит главным образом в виде длинных инфракрасных волн. Они тоже проходят сквозь атмосферу. При обычных условиях оба эти эффекта балансируются, и Земля теряет столько тепла со своей окутанной ночью поверхности, сколько получает на свою поверхность, залитую дневным светом. Средняя температура поверхности остается одной и той же из года в год.

    Азот и кислород, которые фактически составляют всю атмосферу, пропускают как видимый свет, так и инфракрасное излучение. Двуокись углерода, или углекислый газ, и водяной пар пропускают видимый свет, а инфракрасное излучение не пропускают. Это впервые было отмечено ирландским физиком Джоном Тиндалом (1820–1893). Углекислый газ составляет только 0,03 процента земной атмосферы, а содержание водяного пара непостоянное и низкое. Следовательно, они не блокируют полностью инфракрасное излучение.

    Тем не менее отчасти они его все-таки блокируют. Если бы в атмосфере Земли совершенно не было углекислого газа и водяного пара, то по ночам инфракрасное излучение исчезало бы интенсивнее, чем сейчас. Ночи были бы холоднее, чем сейчас, и дни, разогреваясь от холодного старта, тоже были бы холоднее. Средняя температура Земли была бы заметно ниже, чем сейчас.

    Углекислый газ и водяной пар в нашей атмосфере, хотя они и присутствуют в ней в малых количествах, все же блокируют достаточное количество инфракрасного излучения, чтобы служить ощутимыми хранителями тепла. Их наличие способствует заметно более высокой средней температуре на Земле, чем была бы при их отсутствии. Это называется «парниковым эффектом», потому что стекло парника действует подобным же образом, пропуская видимый свет Солнца и удерживая внутри инфракрасное излучение.

    Предположим, что по какой-то причине содержание углекислого газа в атмосфере немного повысилось. Допустим, оно удвоилось до 0,06 процента. Это не повлияет на возможность дышать атмосферным воздухом, и мы ничего не узнаем о самом изменении, но лишь о его последствиях. Атмосфера с таким содержанием углекислого газа будет все же менее прозрачна для инфракрасного излучения. Поскольку инфракрасное излучение будет задерживаться, средняя температура на Земле слегка поднимется. Немного более высокая температура увеличит испарение океанов, поднимет уровень водяного пара в воздухе, и это также будет способствовать усилению парникового эффекта.

    Предположим, с другой стороны, что содержание углекислого газа в атмосфере слегка понизилось, с 0,03 процента до 0,015 процента. Теперь инфракрасное излучение исчезает легче и температура на Земле слегка понижается. При более низкой температуре уменьшается содержание водяного пара, добавляя свою долю к ослаблению парникового эффекта. Такие повышения или падения температуры тоже могут быть достаточными для того, чтобы начать или закончить период оледенения.

    Но что может вызвать такие изменения концентрации углекислого газа в атмосфере? Животная жизнь производит углекислый газ в большом количестве, но жизнь растительная потребляет его в эквивалентном количестве, и эффект жизни в целом в том и состоит, что она поддерживает баланс (Это не вполне верно в отношении той части жизни, которая включает в себя человеческую деятельность. Я вернусь к этому позже). Существуют, однако, естественные процессы, которые производят или потребляют углекислый газ независимо от жизни, и они могут балансировать равновесие в достаточной степени для того, чтобы запустить этот механизм.

    Например, значительная часть углекислого газа, находящегося в атмосфере, может раствориться в океане, но углекислый газ, растворенный в океане, может быть легко снова отдан в атмосферу. Углекислый газ способен также реагировать с окислами коры Земли и образовывать карбонаты, из которых двуокись углерода скорее всего, никуда уже не денется.

    Конечно, открытые воздуху части земной коры уже поглотили то количество двуокиси углерода, которое могли. Однако в периоды горообразования новые породы достигают поверхности, то есть породы, которые не были открыты для доступа углекислого газа, и они могут действовать как среда, поглощающая углекислый газ, снижая его концентрацию в атмосфере.

    С другой стороны, большое количество углекислого газа извергают в атмосферу вулканы, поскольку высокая температура, расплавляющая камни в лаву, расщепляет карбонаты и освобождает двуокись углерода. В периоды необычно высокой вулканической активности содержание в атмосфере углекислого газа может повышаться.

    Как вулканическая деятельность, так и горообразование являются, как я уже говорил, результатом движения тектонических плит, но существуют периоды, когда условия более благоприятны для вулканической активности, чем для горообразования, и наоборот, когда условия более благоприятны для горообразования.

    Вполне возможно, что когда горообразование в истории Земли проявлялось более ярко, содержание углекислого газа в атмосфере понижалось, температура на поверхности Земли падала, и ледники начинали наступать. Когда же активизировалась вулканическая деятельность, содержание углекислого газа повышалось, поднималась температура поверхности Земли, и ледники, если они были, начинали отступать.

    И, наконец, чтобы показать, что не все так просто, как порой кажется, еще одна возможность. Если вулканическое извержение оказывается особенно сильным, в стратосферу может быть поднято большое количество пыли, и это способно послужить причиной такого количества «лет без лета», как было в 1816 году, что в свою очередь может запустить механизм наступления ледникового периода.

    По вулканическому пеплу в океанских отложениях можно заключить, что вулканическая деятельность в последние 2 миллиона лет была примерно в четыре раза интенсивнее, чем за предыдущие 18 миллионов лет. Может быть, как раз сейчас пыльная стратосфера и подвергает Землю своим периодическим оледенениям.

    Орбитальные вариации

    Пока возможные спусковые механизмы оледенения и деоледенения, которые я описал, не являются вполне достоверными факторами предсказания будущего.

    Мы недостаточно хорошо знаем, каковы правила, управляющие слабыми изменениями в солнечной радиации. Мы не вполне осведомлены и о том, что нас ждет впереди, в отношении столкновений с космическими облаками. Мы, конечно, также не можем предсказывать характер вулканических извержений и горообразования.

    Существует, однако, предположение, согласно которому наступление и уход ледниковых периодов столь же регулярны и столь же неизбежны, как смена времен года в годичном цикле.

    В 1920 году югославский физик Милутин Миланкович предположил, что существует большой погодный цикл, связанный с небольшими периодическими изменениями орбиты Земли и наклонного положения ее оси. Он выдвинул идею «Великих зим», в течение которых имеют место ледниковые периоды, и «Великих лет», которые представляют собой межледниковые периоды. Между ними предполагались, соответственно, «Великая весна» и «Великая осень».

    В то время теория Миланковича привлекла не больше внимания, чем теория Вегенера о дрейфе континентов, но дело в том, что изменения орбиты Земли существуют. Например, орбита Земли не абсолютно круглая, а слегка эллиптическая, с Солнцем в одном из фокусов эллипса. Это означает, что расстояние Земли от Солнца день ото дня слегка меняется. Существует время, когда Земля находится в «перигелии», то есть ближе всего к Солнцу, и существует время, когда Земля находится в «афелии», то есть дальше всего от Солнца.

    Разница невелика. Орбита настолько слабо эллиптическая (эллипс малой эксцентричности), что если ее начертить в масштабе, то на глаз ее нельзя отличить от круга. Несмотря на это, малая эксцентричность в 0,01675 означает, что в перигелии Земля находится от Солнца на расстоянии 147 миллионов километров, а в афелии — в 152 миллионах километров. Разница в расстоянии составляет 5 миллионов километров.

    Это большая величина по масштабам Земли, но вместе с тем это разница только на 3,3 процента. Солнце в перигелии появляется по размеру чуть больше, чем в афелии, но недостаточно для того, чтобы это заметил кто-либо, кроме астрономов. Также и сила гравитации в перигелии немного сильнее, чем в афелии, так что в перигелиевой половине орбиты Земля движется быстрее, чем в афелиевой Головине, и времена года тоже не точно равны по длительности, и это тоже остается не замеченным обычным человеком.

    И, наконец, это означает, что в перигелии мы получаем от Солнца больше радиации, чем в афелии. Радиация, которую мы получаем, изменяется обратно пропорционально квадрату расстояния, так что, оказывается, Земля получает в перигелии на 7 процентов больше радиации, чем в афелии. Земля достигает своего перигелия 2 января каждого года и афелия — 2 июля. Так случилось, что 2 января — это меньше чем две недели после зимнего солнцестояния, в то время как 2 июля — меньше двух недель после летнего солнцестояния. Это означает, что, когда Земля в перигелии или близко к нему и получает больше тепла, чем обычно, в северном полушарии глубокая зима, а в южном полушарии самый разгар лета. Дополнительное тепло означает, что северная зима мягче, чем она была бы, будь орбита Земли круглой, в то время, как южное лето жарче. Когда Земля находится в афелии или близко к нему и получает меньше тепла, чем обычно, в северном полушарии разгар лета, а южное полушарие в глубокой зиме. Недостаток тепла означает, что северное лето холоднее, чем оно было бы, будь орбита Земли круглой, в то время как южная зима холоднее.

    Отсюда мы видим, что эллиптичность орбиты Земли дает северному полушарию, кроме тропиков, менее экстремальные колебания между летом и зимой, чем южному полушарию, кроме тропиков.

    Может показаться, что северное полушарие не предрасположено к ледниковому периоду, в то время как южное — предрасположено, но это неверно. На самом деле именно мягкая зима и прохладное лето — менее экстремальные колебания — предрасполагают полушарие к ледниковому периоду.

    В конце концов, зимой идет снег, поскольку температура ниже точки замерзания воды и при условии, что в воздухе имеется избыточная влага. Температура опускается ниже точки замерзания, но снега выпадет меньше, потому что чем ниже температура, тем меньше влаги может содержать воздух. Максимальное количество выпавшего снега приходится на более мягкие зимы, когда температура не слишком часто опускается ниже точки замерзания.

    Количество снега, тающего летом, зависит, конечно, от температуры. Чем жарче лето, тем больше тает снега, и чем прохладнее лето, тем меньше тает снега. Отсюда следует, что раз у нас мягкие зимы и прохладные лета, то у нас много снега и его меньше тает, а это как раз то, что нужно для начала ледникового периода.

    И все же ледникового периода сейчас в северном полушарии нет, хотя у нас мягкие зимы и прохладные лета. Возможно, что перепады все-таки еще слишком экстремальны, и что существуют другие факторы, которые могут действовать так, что делают зимы еще более мягкими, а лета более прохладными. Например, в настоящий момент ось Земли отклонена от вертикали примерно на 23,5°. При летнем солнцестоянии 21 июня северный конец оси наклонен в направлении Солнца. При зимнем солнцестоянии 21 декабря северный конец оси наклонен в направлении от Солнца.

    Ось Земли, однако, не остается наклоненной в том же самом направлении постоянно. Из-за влияния Луны на экваториальную выпуклость Земли ось Земли медленно колеблется. Она остается наклоненной, но направление наклона совершает круг каждые 25 780 лет. Это называется «предварение равноденствия».

    Примерно через 12 890 лет от нашего времени ось Земли будет смещена в противоположном направлении, так что, если это будет единственным изменением, летнее солнцестояние наступит у нас 21 декабря, а зимнее солнцестояние — 21 июня. Летнее солнцестояние окажется тогда в перигелии, и северное лето станет жарче, чем сейчас. Зимнее солнцестояние окажется в афелии, и северная зима станет холоднее, чем сейчас. Другими словами, ситуация окажется противоположной той, что в настоящее время. Северное полушарие получит холодные зимы и жаркие лета, а южное — мягкие зимы и прохладные лета.

    Существуют и другие факторы. Точка перигелия медленно движется вокруг Солнца. Каждый раз, когда Земля совершает оборот вокруг Солнца, она достигает точки перигелия немного в другом месте и немного в другое время. Перигелий (и афелий тоже) совершают полный круг вокруг Солнца приблизительно за 21 310 лет. Каждые 58 лет перигелий сдвигается на один день по нашему календарю.

    Но и это еще не все. Один из эффектов влияния различных гравитационных сил на Землю является причиной колебания наклонной оси, изменения наклона по величине. В 1979 году осевой наклон составляет 23,44229°; но в 1900 году он был 23,45229°, а в 2000 году будет 23,43928°. Как видите, наклон оси уменьшается, но уменьшаться он будет только до последнего приведенного значения, а потом будет снова увеличиваться, потом опять уменьшаться и так далее. Но он никогда не становится менее примерно 22° и никогда более примерно 24,5°. Длительность цикла составляет 41 000 лет.

    Меньший наклон оси означает, что как северный, так и южный полюса Земли получают меньше солнца летом и больше зимой. Результатом являются более мягкие зимы и более прохладные лета для обоих полушарий.

    Наконец, орбита Земли становится то более, то менее эксцентричной. Эксцентричность, которая сейчас составляет 0,01675, уменьшается и в конечном счете достигнет минимального значения 0,0033, или только 1/5 своего настоящего значения. В то время Земля будет только на 990 000 километров ближе к Солнцу в перигелии, чем в афелии. Затем эксцентричность опять начнет увеличиваться до максимума 0,0211, или в 1,6 раза больше ее настоящего значения. Тогда Земля будет в перигелии на 6 310 000 километров ближе к Солнцу, чем в афелии. Чем меньше эксцентричность и чем круглее орбита, тем меньше разница в количестве тепла, которое Земля получает от Солнца в разные врем! на года. Это приводит к ситуации «мягкая зима — прохладное лето».

    Если учитывать все эти вариации в орбите Земли и наклоне ее оси, то в целом представляется, что тенденция к мягким временам года и экстремальным временам года меняется, грубо говоря, каждые 100 000 лет.

    Другими словами, каждый «Великий сезон» Миланковича длится около 25 000 лет. Мы, кажется, прошли сейчас «Великую весну» отступающих ледников и нас ожидает «Великое лето», «Великая осень» и примерно через 50 000 лет «Великая зима» — ледниковый период. Тем не менее, верны ли все эти выкладки? Вариации в орбите и в наклоне оси маленькие, и разница между холодной зимой — жарким летом и мягкой зимой — прохладным летом реально незначительна. Достаточна ли эта разница?

    Проблемой занялись трое ученых: Дж. Д. Хейс, Джон Имбри и Н. Дж. Шеклтон, — и полученные ими результаты были опубликованы в декабре 1976 года. Они работали с длинными стержнями донных осадков, извлеченными из двух разных мест в Индийском океане. Места находились далеко от суши, чтобы не было материала, смытого с побережья, который бы исказил показания. Места были также относительно мелкие, но такие, чтобы не было материала, смытого с менее глубоких районов.

    Осадок, как полагали, был нетронутым материалом, лежащим на месте из века в век, и длина извлеченного стержня «простиралась» примерно на 450 000 лет назад. Была надежда обнаружить изменения вдоль стержней, которые будут настолько же выраженными, как изменения в годичных кольцах деревьев, позволяющих определить лета сухие и лета влажные.

    Одно изменение было связано с крошечной радиолярией, которая обитала в океане в течение всего изучаемого полумиллиона лет. Это простейший одноклеточный животный организм с очень маленьким хорошо развитым скелетом, который после гибели особи опускается на дно, как своего рода ил. Существует много разновидностей радиолярий, некоторые из них процветают при более теплых условиях, чем другие. Их легко отличить друг от друга по скелету, и поэтому можно, миллиметр за миллиметром проходя вдоль стержня осадков и изучая скелеты радиолярий, установить по ним, какая вода была в океане в каждое данное время — теплая или холодная. Таким путем можно построить фактическую кривую температуры океанской воды во времени.

    Изменение температуры воды в океане во времени можно также установить путем определения отношения в различное время двух разновидностей атомов кислорода: кислорода-16 и кислорода-18. Вода, содержащая в своих молекулах кислород-16, испаряется легче, чем вода, содержащая кислород-18.

    Это означает, что дождь или снег, выпадающие на землю, состоят из молекул, более богатых кислоро-дом-16 и более бедных кислородом-18, чем океанская вода. Если большое количество снега выпадает на землю и сковывается в ледниках, то остающаяся в океанах вода страдает значительным дефицитом кислорода-16, в то время как содержание в ней кислорода-18 увеличивается. Оба метода суждения о температуре воды (и преобладании льда на суше) дали идентичные результаты, хотя они принципиально различны. Более того, цикл, построенный по этим двум методам, оказался очень похожим на цикл, рассчитанный по изменениям орбиты Земли и наклона ее оси.

    Поэтому в настоящий момент и в ожидании дальнейших свидетельств этого представляется, что идея Миланковича о «Великих сезонах» выглядит неплохо.

    (Сейчас ученые склоняются к мысли, что идет глобальное потепление, и даже быстрее, чем предполагалось настоящее «Великое лето». Весной 1999 года установили, что почти 1/3 Гренландии освободилась от вечных льдов, с самолета даже невооруженным глазом видно, что обнажились скалы и озера. В результате потепления на рубеже веков участились ураганные ветры, проливные дожди, обильные снегопады, наводнения, землетрясения и извержения вулканов).

    Северный ледовитый океан

    Если ледниковые периоды сопутствуют «Великим сезонам», то можно точно предсказать, когда начнется следующий ледниковый период. Он должен наступить через 50 000 лет.

    Но не следует полагать, что причина ледникового периода в природе естественна. Может существовать не одна способствующая причина. Например, изменения орбиты и положения оси могут установить основной период, но другие факторы способны корректировать его. Изменение солнечной радиации, запыленности космоса между Солнцем и Землей или содержания углекислого газа в атмосфере могут по отдельности или вместе воздействовать на цикл, усиливая его в одних случаях и противодействуя в других.

    Если два и более эффекта совпадают, ледниковый период может быть более суровым, чем обычно. Если орбитальным и осевым изменениям противодействует необычно ясный космос, необычно высокое содержание углекислого газа или необычно пятнистое Солнце, то ледниковый период может быть необычно мягким или вообще пропущен.

    В настоящем случае мы имеем основания бояться самого худшего, поскольку через 50 000 лет мы не только достигнем Великой зимы, но мы также (как я говорил ранее в этой главе) можем войти в космическое облако, которое ослабит достигающую нас солнечную радиацию.

    Однако мы тут совершенно отвлекаемся от главного. В конце концов, орбитально-осевые колебания должны продолжаться с абсолютной регулярностью, поскольку Солнечная система существует в своей настоящей структуре. В течение всей жизни должны были быть и ледниковые периоды каждые сто тысяч лет.

    И вдруг оказывается, что ледниковые периоды были присущи только последнему миллиону лет. До того, в течение примерно 250 миллионов лет, по-видимому ледниковых периодов не было вообще. Не исключено даже, что существуют последовательные периоды ледниковых периодов, скажем, в несколько миллионов лет отделенные друг от друга интервалами в четверть миллиарда лет.

    Но почему интервалы? Почему в течение этих длительных интервалов не было ледниковых периодов, хотя орбитально-осевые колебания происходили и тогда точно так же, как они происходят сейчас? Причина может быть в конфигурации расположения суши и океанов на поверхности Земли.

    Если бы полярный район состоял из обширного морского пространства, было бы несколько миллионов квадратных километров морского льда, не очень толстого, окружающего полюс. Морской лед был бы толще и более обширным зимой, тоньше и менее обширным летом.

    В конце ледникового периода, обусловленного орбитально-осевым колебанием, морской лед был бы в общем толще и более обширным зимой и летом, но не намного больше. В конце концов существуют океанские течения, которые постоянно приносят более теплую воду в высокие широты из умеренных и тропических регионов, и это создает тенденцию смягчать полярную погоду даже в течение ледникового периода.

    С другой стороны, если бы полярный регион состоял из континента с полюсом более или менее в его центре и с несломанным льдом на море вокруг него, мы полагаем, что и континент был бы покрыт толстой шапкой льда, который бы не таял в течение очень прохладного лета и накапливался из года в год.

    Но, конечно, лед бы не накапливался вечно, так как под влиянием значительного веса он течет, как доказал полтора века назад Агассиз. Лед постепенно стекает в окружающий океан, разламываясь на громадные айсберги. Айсберги вместе с морским льдом плавали бы вокруг полярного континента и, когда они дрейфовали бы в направлении более умеренных широт, постепенно бы таяли. В ледниковый период айсберги бы приумножались, в межледниковые периоды их количество бы уменьшалось, но изменение не было бы большим. Окружающий океан, благодаря океанским течениям, поддерживал бы свою температуру на уровне, очень близком к нормальному, будь то ледниковый период или нет.

    Подобная ситуация существует на Земле, поскольку Антарктика покрыта толстой шапкой льда, и океан, окружающий ее, полон айсбергов. Антарктика, однако, имеет эту ледовую шапку приблизительно 20 миллионов лет, и едва ли на ней сказывалось наступление или отступление ледниковых периодов.

    Предположим, однако, что у вас есть полярный океан, не очень обширный. Предположим, у вас маленький, почти замкнутый сушей океан, такой, как Северный Ледовитый. Северный Ледовитый океан не больше Антарктиды, и он почти весь окружен огромными континентальными массами Евразии и Северной Америки. Единственная значительная связь Северного Ледовитого океана с остальными водами мира — это пролив в 1600 километров шириной между Гренландией и Скандинавией, и даже тот частично блокируется островом Исландия.

    Именно северные земли составляют все различие, тот дополнительный снег, который во время мягкой зимы, во время пуска механизма ледникового периода выпадает на сушу, а не в океан. В океане снег бы просто таял, потому что вода имеет большую теплоемкость и потому что, даже если скапливающийся снег и был бы способен понизить температуру океана до точки замерзания, водные течения из более теплых краев предотвращали бы это.

    На суше, однако, положение снега лучше. Суша имеет более низкую теплоемкость, чем вода, так что она остывает гораздо быстрее под тем же количеством снега.

    Более того, тут нет никаких течений, чтобы улучшить положение, так что земля как следует застывает. Затем если летом недостаточно тепла, чтобы растопить весь снег, снег превращается в лед и ледники начинают свой марш.

    Наличие больших массивов суши, имеющихся вокруг Северного полюса, обеспечивает огромную площадь для снега и льда, а Северный Ледовитый океан (особенно до наступления ледникового периода, покроющего его морским льдом) является источником влаги. Распределение океана и континентов в северном полушарии как раз такое, чтобы максимально ужесточить ледниковый период.

    Но распределение океана и континентов в северном полушарии не является постоянным. Оно меняется в результате тектонических подвижек.

    Отсюда следует, что пока поверхность Земли распределяется таким образом, что полярные районы являются либо открытым океаном, либо изолированным континентом, окруженным океаном, — нет места ледниковым периодам. И только когда движущиеся плиты случайно создают такое распределение суши и океана, какое существует в северных полярных регионах сегодня, орбитально-осевой цикл приносит тот тип ледниковых периодов, с которым мы знакомы. Это происходит только один раз за 250 миллионов лет.

    Но мы существуем сегодня, и, несомненно, распределение континентов в течение последующего миллиона лет существенно не изменится, так что нас ожидает не один, а целый ряд ледниковых периодов.

    Эффект оледенения

    Предположим, что ледниковый период уже наступил. Насколько это страшное бедствие? В конце концов, миллион лет ледники приходили и уходили, а мы вот продолжаем существовать. Пожалуй, забудем думать об этом, ведь ледники ползут очень медленно. Им требуются тысячи лет, чтобы продвинуться. И удивительно, насколько малые изменения претерпевают существенные части мира даже в стадии максимума оледенения.

    В настоящее время существует 25 миллионов кубических километров льда, покоящегося на различных поверхностях суши, главным образом в Гренландии и в Антарктике. На вершине пика оледенения существовал чудовищный ледовый пласт, покрывавший северную половину Северной Америки, и меньшие ледовые пласты в Скандинавии и северной Сибири. В то время на суше находилось примерно 75 миллионов кубических километров льда. Это означает, что на верхнем пике оледенения 50 миллионов кубических километров воды, которые сейчас в океане, находились на суше.

    Вода, вычтенная из океана, чтобы напитать ледники, составляла, однако, даже на верхнем пике оледенения всего 4 процента от ее общего количества. А это означает, что даже в то время 96 процентов воды находилось именно там, где находится сейчас.

    Следовательно, с точки зрения пространства морская жизнь не ощущала заметного сужения среды обитания. Конечно, океанская вода в среднем была, наверное, несколько холоднее, чем сейчас, но что из того? Холодная вода растворяет больше кислорода, чем теплая, а морская жизнь в такой же степени зависит от кислорода, как и мы. Вот почему полярные воды намного богаче жизнью, чем тропические, и вот почему полярные воды могут поддерживать жизнь гигантских млекопитающих, которые питаются морской живностью, — таких, как большие киты, белые медведи, морские слоны и так далее.

    Если в течение ледникового периода океанская вода была холоднее, чем сейчас, на самом деле это лишь подстегнуло жизнь. Может быть, как раз сейчас жизнь в море несколько ущемлена, а не тогда.

    Иной была ситуация на суше, и может показаться ч она была бедственной. В настоящий момент 10 процентов суши покрыто льдом. На верхнем пике оледенени площадь оледенения была в три раза больше — 30 про центов нынешней поверхности Земли было покрыто льдом. Это означает, что площадь, предоставленная жизни на суше, была снижена примерно с 117 миллионов квадратных километров, свободных ото льда, по крайней мере летом, до не более чем 90 миллионов квадратных километров. И все же это не вполне верная картина того, что тогда могло быть фактически.

    На верхнем пике оледенения потеря 4 процентов воды из океана означает падение уровня моря примерно на 150 метров. Это не изменило бы сильно сам океан, но вокруг континентов по краям океана находятся отмели с небольшими глубинами. Эти отмели с глубинами менее 180 метров называются континентальным шельфом». Когда уровень моря падает, континентальный шельф мало-помалу появляется из воды и открывается для вторжения жизни с суши.

    Другими словами, когда ледники продвигаются и покрывают сушу, уровень моря падает и открывает новую сушу. Эти явления могут в значительной степени уравновешиваться. Поскольку ледники движутся крайне медленно, растительность медленно продвигается впереди ледников на юг и на оголившиеся континентальные шельфы, животная жизнь, естественно, следует за растительной.

    Когда продвигаются ледники, штормовые пояса также отступают в южном направлении, принося дожди в более теплые края Земли, которые не получали их раньше (и тех пор — тоже). Короче говоря, то, что сейчас — пустыня, не было пустыней в ледниковый период. До послед него отступления ледников нынешняя Сахара была плодородными луго-пастбищными угодьями.

    И общая площадь суши, открытой обильному насыщению различными видами жизни, как это ни парадокально была на пике ледникового периода больше, чем сейчас и этот парадокс мы аргументируем оголением континентальных шельфов и сокращением пустынь. Во время последнего ледникового периода люди — не наши человекообразные предки, а собственно Homo sapiens, процветали, они переселялись на юг по мере продвижения ледников, а по мере их отступления — на север.

    Каким же будет грядущий ледниковый период? Предположим, ледники начнут свое новое наступление сейчас. Насколько это будет бедственно?

    Конечно, человечество сейчас менее мобильно, чем было. В последний ледниковый период общая численность людей, была около 20 миллионов, сейчас на Земле 4 миллиарда (Сейчас, в 2000 году, более 6 миллиардов) человек, то есть в двести раз больше. 4 миллиардам человек перемещаться труднее, чем 20 миллионам.

    Рассмотрим также изменения в стиле жизни. Во время последнего ледникового периода люди не были ни в коей мере привязаны к земле. Они были собирателями пищи и охотниками за пищей. Они следовали за растениями и животными, и все места были для них похожими, поскольку они могли найти фрукты, орехи, ягоды и дичь.

    С тех пор люди научились быть фермерами и рудокопами. Фермы и шахты нельзя сдвинуть с места. Нельзя сдвинуть с места и многочисленные сооружения, которые воздвигли люди, города, туннели, мосты, дороги, линии электропередач и так далее. Ничего этого сдвинуть нельзя, это может быть только оставлено, и где-нибудь еще возведено новое.

    Тем не менее не забывайте, насколько медленно ледники надвигаются и отступают и насколько медленно в результате опускается и поднимается уровень моря. Будет масса времени для того, чтобы передвижение произошло без бедствий. Мы можем представить себе человечество, медленно продвигающимся на юг и на континентальные шельфы, затем вглубь суши, и опять на север, и так поочередно много раз в течение всего времени, пока продолжает существовать нынешняя конфигурация континентов вокруг Северного полюса. Это — как бы своего рода выдох в течение 50 000 лет, затем — как бы вдох за следующие 50 000 лет и так далее.

    И это не будет равномерным движением, поскольку ледники наступают с интервалами частичного отступления и отступают с интервалами частичного наступления; а люди будут следовать этим нюансам наступления и отступления, ведь все они достаточно медленные.

    Изменения в окружающей среде — это не обязательно только движение ледников. Пока что отступление ледников последнего ледникового периода не является абсолютным. Остается ледовая шапка Гренландии, нерастаявший остаток ледникового периода. Что если впереди «Великое лето», климат смягчится и растает лед на Северном полюсе и ледовая шапка Гренландии?

    Ледовая шапка Гренландии содержит 2,6 миллиона кубических километров льда. Если и меньшие пласты льда на некоторых других полярных островах растают и вольются в океан, уровень моря поднимется примерно на 5,5 метра. Это, конечно, будет неприятностью для некоторых наших прибрежных районов и в особенности для низко расположенных городов; такие, например, как Новый Орлеан, будут просто затоплены (В России такая же участь постигла бы Санкт-Петербург и многие другие прибрежные города). Опять же если таяние будет происходить достаточно медленно, и уровень моря соответственно подниматься, то можно представить себе прибрежные города, медленно оставляющие линию берега и безо всяких бедствий отступающие на более высокие места.

    Предположим, что по каким-то причинам слой льда Антарктики тоже растает. Это маловероятно по естественному ходу вещей, потому что этот лед пережил все межледниковые периоды прошлого, — но предположим! Поскольку 90 процентов льда на Земле располагается в Антарктике, то, если он растает, уровень моря поднимется в сумме с тем, что растаяло в Гренландии, в десять раз больше. Уровень моря поднимется примерно на 55 метров, и вода достигнет восемнадцатого этажа небоскребов Нью-Йорка. Низко расположенные края нынешних континентов окажутся под водой. Штат Флорида и многие другие штаты залива исчезнут, также исчезнут Британские острова, Нидерланды, Северная Германия и так далее.

    Однако климат Земли станет более равномерным и не будет ни полярных земель, ни пустынь. И опять же, территория, пригодная для обитания человечества, останется такой же большой, как и раньше, и, если изменение будет достаточно медленным, даже таяние льдов Антарктики не станет ужасным бедствием.

    Однако, если наступление следующего ледникового периода или таяние льдов Антарктики отодвинется хотя бы на десять тысяч лет, ничего этого не случится. Передовая технология человечества вполне способна видоизменить пусковой механизм ледникового периода и сохранить средние температуры Земли на обычном Уровне, если это будет желательно.

    Например, в ближнем космосе можно разместить зеркала (В феврале 1999 года американской ракетой было отправлено на орбиту космическое зеркало из пленки диаметром 25 метров. «Развернутом виде оно должно было давать отраженный свет сильнее света Луны в полнолуние. О результатах эксперимента нам неизвестно.), направленные таким образом, чтобы отражать солнечный свет, который минует Землю, и направлять его на ночную поверхность Земли или при необходимости отражать солнечный свет, который обычно падает на дневную поверхность Земли, не давая ему достичь земной поверхности. Таким способом Землю можно слегка нагревать, если угрожают ледники, или слегка охлаждать, если угрожает таяние льда (Сходные сооружения, если люди удосужатся взять на себя такой труд, могут послужить и для того, чтобы сохранить Землю обитаемой еще на несколько десятков тысяч лет после того, как постепенно разогревающееся Солнце может сделать ее необитаемой.).

    Опять же, мы можем разработать методы влияния на концентрацию углекислого газа в атмосфере Земли и действовать с помощью этих методов таким образом, чтобы сохранять тепло, если будут угрожать ледники, и выпускать его с Земли, если будет угрожать таяние льда.

    Наконец, когда все больше и больше населения Земли переберется в космические поселения, приход и уход ледников станут менее опасны для человечества в целом.

    Короче: ледниковые периоды, как они возникали в прошлом, могут не быть катастрофическими в будущем, они могут даже не быть бедственными. Они могут и не возникнуть благодаря технологии человечества.

    Но что если ледники подойдут неожиданно и с беспрецедентной скоростью, или если запас льда Земли неожиданно растает до того, как мы будем к этому готовы в технологическом плане?

    Тогда нас может ожидать огромное бедствие или даже катастрофа, и существуют условия, при которых это могло бы произойти, о чем я расскажу ниже.

    11. Перемещение магнетизма

    Космические лучи

    Различные катастрофы, которые происходили на Земле, будь то ледниковые периоды или землетрясения, никогда не были достаточно сильными, чтобы стереть с поверхности планеты жизнь, как предполагал Кювье и другие катастрофисты несколько веков назад, но все же бывало так, что жизнь несла значительный урон. По окончании Пермского периода, 225 миллионов лет назад, за сравнительно короткий период времени прекратили свое существование примерно 75 процентов семейств земноводных и 80 процентов семейств рептилий, которые проживали в Пермский период. Некоторые называют это «великим умиранием».

    После того, по-видимому, было еще шесть таких великих умираний. Время, наиболее часто обозначаемое этим выражением, относится к концу Мелового периода — это около 70 миллионов лет назад. В то время после процветания в течение почти 150 миллионов лет полностью вымерли динозавры. Также вымерли и другие рептилии, — ихтиозавры, плезиозавры и летающие птерозавры. Из беспозвоночных вымерли аммониты, которые были большой и процветающей группой. Собственно, тогда исчезло до 75 процентов животных, и, по-видимому, за сравнительно короткое время.

    Представляется вероятным, что такие великие умирания были результатом некоторого заметного и сравнительно неожиданного изменения в окружающей среде, но это было такое изменение, которое оставило в живых большое количество особей, насколько мы можем судить, едва затронутых этим изменением.

    Особенно логично объяснение о мелководных морях, которые время от времени вторгались на континенты и время от времени исчезали. Вторжение может происходить, когда ледовая нагрузка на полярные земли особенно низка, а исчезновение может иметь место в период горообразования, когда средняя высота континентов над уровнем моря возрастает. Во всяком случае мелководные внутриконтинентальные моря предоставляют благоприятные условия для морских животных, а они в свою очередь представляют собой стабильный и богатый запас пищи для других животных, которые живут на берегах. Когда внутренние моря исчезают, то как сами морские животные, так и на земные животные, жизнь которых зависит от них, естественно, вымирают (Хорошо известные нам Аральское и Каспийское моря быстро «усыхают» на глазах у трех поколений. Возможно, они, как и ледники Гренландии, тоже являются остатками не до конца отступившего ледникового периода).

    В пяти из семи случаев великих умираний за последнюю четверть миллиарда лет причиной, по-видимому, было исчезновение морей. Это объяснение подтверждается также тем, что морские животные, по всей видимости, более подвержены великим умираниям, чем животные наземные, и что растительный мир, по-видимому, едва ли вообще подвержен этим умираниям.

    Усыхание морей, может быть, наиболее логичное и разумное объяснение проблемы (объяснение, не содержащее в себе никаких ужасов для людей, которые не живут во внутриконтинентальных морях, но живут в мире, где нет значительных внутриконтинентальных морей) среди многих других предположений, которые выдвигались для объяснения великих умираний. Одно из таких предположений, хотя и маловероятное, отличается своей драматичностью. Более того, оно приводит нас к новому типу катастроф, который мы еще не рассматривали и который может угрожать человечеству. Это предположение связано с радиацией из космоса, поступающей не от Солнца.

    В первые годы двадцатого века была обнаружена радиация, причем даже более проникающая и энергетичная, чем чуть ранее открытая радиоактивность. В 1911 году австрийский физик Виктор Фрэнсис Гесс (1883–1964), чтобы удостовериться, что эта проникающая радиация поступает от Земли, направил регистрирующие радиацию приборы на воздушных шарах на высоту 9 километров. Он ожидал, что уровень радиации там будет меньше, потому что отчасти ее должен был поглотить воздух между поверхностью земли и поднятыми на высоту приборами.

    Оказалось наоборот, интенсивность проникающей радиации увеличилась с высотой настолько, что стало ясно: она поступает из внешней Вселенной, из космоса. С легкой руки американского физика Роберта Эндрюса Милликена (1863–1953) этой радиации было дано название — «космические лучи». В 1930 году американский физик Артур Холли Комптон (1892–1962) доказал, что космические лучи — это очень энергетичные положительно заряженные частицы. Тогда стало понятным, что является источником космических лучей.

    Солнце и, предположительно, все звезды претерпевают процессы, которые достаточно энергетичны для того, чтобы выпрыснуть в пространство частицы. Эти частицы, большей частью, — атомные ядра. Поскольку Солнце в основном состоит из водорода — ядра водорода, которые представляют собой простые протоны, являются наиболее частыми среди этих частиц.

    Эти энергетичные, то есть несущие энергию протоны и другие ядра идут от Солнца потоками во всех направлениях и представляют собой солнечный ветер, о котором я упоминал ранее.

    Когда в Солнце происходят особенно мощные процессы, частицы выбрасываются с большей энергией. Когда на солнечной поверхности образуются большие «вспышки», в солнечный ветер включаются и очень энергетичные частицы, но в нем могут содержаться частицы и низких даже для космических лучей уровней энергии (о которых говорят, как о «мягких космических лучах»).

    Другие звезды тоже посылают звездные ветры, и эти звезды, которые массивнее и горячее Солнца, посылают более энергетичные ветры, более богатые частицами с высоким уровнем энергии. В особенности это относится к сверхновым.

    Частицы космических лучей, будучи электрически заряженными, искривляют свой путь при прохождении магнитного поля. Все звезды имеют магнитные поля, и Галактика в целом тоже. Частицы космических лучей следуют сложными искривленными путями, в процессе движения ускоряются магнитными полями, которые проходят, и в результате приобретают еще больше энергии.

    В конечном счете все межзвездное пространство в пределах нашей Галактики насыщено частицами космических лучей, идущими во всех направлениях. Определенный, очень маленький их процент обязательно и по чистой случайности попадает на Землю и попадает со всех возможных направлений.

    Тут у нас появляется новый тип вторжения из открытого космоса, который мы еще не рассматривали. Ранее я указывал, насколько невероятно, чтобы Солнечная система столкнулась с какой-нибудь звездой или через нее прошли бы даже маленькие куски вещества, пришедшие из других планетарных систем. Упоминал я и о частицах пыли, и об атомах из межзвездных облаков.

    Теперь нам предстоит рассмотреть вторжение из космоса, извне Солнечной системы, мельчайших материальных объектов — субатомных частиц. Их настолько много, они распределены по космосу настолько плотно и передвигаются со скоростью, настолько близкой к скорости света, что Земля подвергается ими постоянной бомбардировке.

    Однако космические лучи не оставляют никаких меток на Земле, и мы не знаем об их появлении. Только ученые с их специальными приборами могут обнаруживать космические лучи, и то лишь в пределах жизни двух последних поколений.

    Кроме того, космические лучи попадают на Землю в течение всей истории жизни на нашей планете, и, по-видимому, Земля совсем не стала хуже от этого. Очевидно, и люди не страдали от этого в ходе всей истории. Поэтому может показаться, что мы имеем все основания исключить космические лучи как причину катастрофы, — и все же это не так.

    ДНК и мутации

    Всякая живая клетка является крошечной химической фабрикой. Свойства определенной клетки, ее форма, ее структура и ее способности зависят от определенной природы происходящих в ней химических изменений, от скорости, с которой каждое из них происходит, и способа, которым они между собой связаны. Подобные химические реакции происходят очень медленно, если вещества, составляющие клетки и участвующие в реакциях, просто смешаны вместе. Чтобы реакции шли быстро и равномерно (как, по наблюдениям, это и происходит, и как необходимо для того, чтобы клетка могла жить), эти реакции должны направляться определенного рода комплексами молекул, называемыми «ферментами».

    Ферменты принадлежат к классу веществ, называемых «протеинами»-. Протеины состоят из гигантских молекул, каждая из которых построена из цепей более мелких строительных блоков, называемых «аминокислотами». Эти аминокислоты выступают примерно в двадцати разновидностях и способны соединяться друг с другом в любом порядке.

    Предположим, мы начнем с одной из этих двадцати аминокислот и каждую из них поставим с остальными во всех возможных сочетаниях. Общее количество сочетаний — около 50000000000000000000 (пятьдесят миллиардов миллиардов), и каждое отличается от другого расположением аминокислот, каждое представляет собой разные молекулы. Фактически молекулы ферментов состоят из сотни или более аминокислот, и число возможного комбинирования этих аминокислот неисчислимо велико. Однако определенная клетка будет содержать только определенное, ограниченное количество ферментов, и каждая молекула определенного фермента будет иметь конструкцию аминокислотной цепочки, составленную из аминокислот в одном особом порядке.

    Определенный фермент построен так, что определенные молекулы будут присоединяться к поверхности фермента таким образом, что взаимодействие между ними — включая перенос атомов — сможет происходить очень быстро. После взаимодействия измененные молекулы не будут больше держаться на поверхности. Они уходят, а другие молекулы присоединяются и вступают в реакцию. Именно в результате наличия нескольких молекул определенного фермента большие количества молекул реагируют друг с другом. В отсутствие фермента они бы не реагировали вообще[8].

    Что же из этого следует? А то, что форма, структура и свойства определенной клетки зависят от различной природы ферментов в этой клетке, от числа этих ферментов и способа, которым они производят свою работу. Свойства многоклеточного организма зависят от свойств клеток, которые его составляют, и от способа, которым взаимосвязаны отдельные клетки. В общем (конечно, это не так просто), все организмы, включая и человеческий, являются продуктом ферментов.

    Но это представляется случайной зависимостью. Если конструкция фермента не имеет точного порядка аминокислот, он может оказаться неспособным исполнить свою работу. Поменяйте одну аминокислоту на Другую и фермент не послужит подходящим катализатором для реакции, которой он управляет.

    Что же тогда образует ферменты так точно? Что следит за тем, чтобы устанавливался определенный порядок аминокислот для определенного фермента, и никакой другой? Существует ли в клетке какое-нибудь ключевое вещество, которое, содержит, так сказать, «программу» всех ферментов в клетке, направляя таким образом их изготовление?

    Если такое ключевое вещество существует, оно должно быть в хромосомах. Это маленькие объекты внутри центрального ядра клетки, и ведут они себя так, словно несут в себе программу.

    В различных видах организмов хромосомы присутствуют в разных количествах. У человека, например, каждая клетка содержит двадцать три пары хромосом.

    Каждый раз, когда делится клетка, каждая хромосома делится на две хромосомы, каждая — точная копия другой. В процессе деления клетки одна из точных копий каждой хромосомы идет в одну клетку, другая точная копия — в другую клетку. Таким образом, каждая дочерняя клетка получает по двадцать три пары хромосом, причем оба набора пар являются идентичными. Это и указывает на то, что хромосомы несут в себе программу структуры ферментов.

    Все организмы, кроме наиболее примитивных, вырабатывают половые клетки, задача которых состоит в том, чтобы образовывать новые организмы более сложным способом, чем простое деление клетки. Таким образом мужчины (и самцы большинства животных) вырабатывают клетки спермы, а женщины производят яйцеклетки. Когда клетка спермы соединяется с яйцеклеткой, «оплодотворяет» ее, результирующая комбинация может претерпеть повторные деления, пока не образуется новый, отдельно живущий организм.

    Как яйцеклетки, так и клетки спермы имеют только половину обычного количества хромосом. Все яйцеклетки и все клетки спермы получают только по одной хромосоме от каждой из двадцати трех пар. Когда они сочетаются, оплодотворенная яйцеклетка имеет опять двадцать три пары хромосом, но одну в каждой паре от матери, одну — от отца. Таким образом потомство наследует свойства равным образом от обоих своих родителей, и хромосомы ведут себя так, словно несут в себе программу для приготовления фермента.

    Но какова химическая природа этой предполагаемой программы?

    Со времени открытия хромосом в 1879 году немецким анатомом Вальтером Флеммингом (1843–1905) имело место общее допущение, что программа, если она существует, это — протеин. Протеины, как известно, наиболее сложные вещества, существующие в тканях, а ферменты, как стало известно в 1926 году из работ американского биохимика Джеймса Батчелора Самнера (1887–1925), собственно и есть протеины. Безусловно, именно протеин должен служить программой для конструирования других протеинов.

    Однако в 1944 году канадский физик Освальд Теодор Авери (1877–1955) доказал, что молекулой программы является совсем не протеин, а молекула другого типа, называемая «дезоксирибонуклеиновая кислота», или сокращенно ДНК.

    Это было большим сюрпризом, потому что полагали, что ДНК является простой молекулой, такой, которая совсем не подходит для того, чтобы служить программой для сложных ферментов. Более пристальное изучение ДНК, однако, показало, что это на самом деле сложная молекула, более сложная, чем протеины.

    Как и молекула протеина, молекула ДНК состоит из длинных цепей простых строительных блоков. Строительный блок здесь называется «нуклеотидом», и одна молекула ДНК может быть построена цепями из многих тысяч нуклеотидов. Нуклеотиды представлены четырьмя разновидностями (не двадцатью, как протеины), и эти четыре разновидности могут быть сцеплены вместе в каком угодно порядке.

    Возьмем три нуклеотида. Тогда будет 64 различных «тринуклеотида». Если пронумеровать нуклеотиды: 1, 2, 3 и 4, — получим тринуклеотиды: 1-1-1, 1-2-3, 3-4-2, 4-1-4 и так далее, всего 64 различных комбинаций. Один или более из этих тринуклеотидов могут соответствовать определенной аминокислоте; некоторые могут обозначить «пунктуацию» — начало цепи аминокислот или ее окончание. Перевод тринуклеотидов молекулы ДНК в аминокислоты ферментной цепи называется «генетическим кодом».

    Но это, просто заменяет одну проблему другой. Что позволяет клетке из неисчислимого количества молекул ДНК, которые могут существовать в принципе, строить определенную молекулу ДНК, которая приведет к построению молекулы определенного фермента?

    В 1953 году американскому биохимику Джеймсу Дьюи Уотсону (р. 1928) и английскому биохимику Фрэнсису Г. К. Крику (р. 1916) удалось установить структуру молекулы ДНК. Она состояла из двух прядей, свитых в двойную спираль. (То есть каждая прядь имела форму винтовой лестницы, и обе пряди переплетались.) Каждая прядь в определенном смысле была противоположностью другой, так что они совершенно подходили друг к другу. В процессе деления клетки каждая молекула ДНК разматывалась на две отдельные пряди. Каждая прядь затем сама собой осуществляла построение второй пряди, которая совершенно ей подходила. Каждая прядь служила программой для своего нового партнера, и результат был таков, что там, где вначале существовала одна двойная спираль, образовывались две двойные спирали, каждая — точная копия другой. Процесс был назван «репликацией». Таким образом, раз существовала определенная молекула ДНК, она размножалась сама, точно сохраняя свою форму от клетки к дочерней клетке и от родителя к потомству.

    Отсюда следует, что каждая клетка и, конечно, каждый организм, в том числе человеческий, имеет свою форму, свое строение, свою химию (до определенной степени даже свое поведение), в точности определяемые его ДНК. Оплодотворенная яйцеклетка одного вида организма не очень отличается от яйцеклетки организма другого вида, но молекулы ДНК в каждой существенно отличаются одна от другой. По этой причине человеческая оплодотворенная яйцеклетка будет развиваться в человеческое существо, а оплодотворенная яйцеклетка жирафа будет развиваться в жирафа, и никакая путаница тут невозможна.

    Но так уж происходит, что передача молекул ДНК от клетки к дочерней клетке и от родителя к потомку не столь же совершенна, как все остальное. Опыт пастухов и фермеров говорит, что то и дело появляются животные или растения, которые далеко не во всем похожи на родительские организмы, В целом эти отличия невелики и иногда даже не особенно заметны. Иногда же отклонение настолько велико, что создает так называемую «разновидность» или «монстра». Научный термин для всех таких потомков с измененными характеристиками, экстремальными или незаметными — мутант, от латинского слова «мутация» — изменение.

    Обычно ярко выраженные мутации вызывали тревогу и мутанты уничтожались. Однако в 1791 году массачусетский фермер по имени Сэт Райт взглянул на мутацию более практично. У него в отаре овец родился ягненок с ненормально короткими ногами, и практичному янки пришло в голову, что коротконогая овца не сможет убежать через низкую каменную ограду вокруг фермы. И с этого не совсем счастливого случая он принялся разводить коротконогих овец и помог людям вообще обратить внимание на мутацию. Однако только с 1900 года, с опубликования работ голландского ботаника Гуго Марие де Врие (1848–1935) мутации стала изучать наука.

    Собственно, когда мутации не были особенно сильно выражены, не пугали и не вызывали отвращения, пастухи и фермеры давно заведенным порядком использовали их преимущества. Путем отбора из каждого поколения животных, которые казались наиболее подходящими для использования человеком — коров, дающих много молока кур, несущих много яиц, овец, дающих много шерсти, и так далее, — развивались породы, качества которых сильно отличались от тех диких особей, которые были приручены первоначально.

    Это результат отбора маленьких и не очень значительных мутаций, которые, однако, как коротконогие овцы Райта, передаются по наследству. Отбирая мутацию за мутацией и все в одном направлении, человек, со своей точки зрения, «улучшает» породу. Если вспомнить о множестве разновидностей собак и голубей, мы можем представить, насколько искусно умеем изменять и создавать породы, тщательно подбирая пары, сохраняя одних отпрысков и выбраковывая других.

    То же самое и гораздо легче может быть проделано с растениями. Американский садовод Лютер Бербанк (1849–1926) сделал успешную карьеру на выведении сотен новых разновидностей растений, усовершенствованных в том или ином отношении по сравнению со старыми, не только путем мутаций, но и направленным скрещиванием и прививками (В России огромная подобная работа проделана садоводом И. В. Мичуриным (1855–1935)).

    То, что люди делают целенаправленно, слепые силы естественного отбора делают очень медленно, в течение веков. В каждом поколении отпрыски определенных особей из-за незначительных мутаций частично изменяются, изменения передаются от особи к особи. Те, чьи мутации позволяют участвовать в игре жизни более эффективно, имеют больше шансов выжить и передать эти мутации более многочисленным потомкам. Одна особь заменяет другую, и понемногу за миллионы лет из видов особей создаются новые.

    Это — основная мысль теории эволюции путем естественного отбора, выдвинутая в 1858 году английским натуралистом Чарлзом Дарвином и Альфредом Расселом Уоллесом.

    На молекулярном уровне мутации являются результатом несовершенного копирования ДНК. Оно может иметь место от клетки к клетке в процессе деления клеток. В этом случае в пределах организма может быть произведена клетка, которая непохожа на другие клетки. Это — «соматические мутации».

    Обычно мутация неблагоприятна. В конце концов, если мы обратимся к сложной молекуле ДНК, которая повторяет себя и ставит в соответствующее место неправильный строительный блок, то нам станет ясно, что вряд ли из-за ошибки результат будет лучше. В итоге клетка кожи или, скажем, печени, подвергнувшаяся мутации, может работать настолько плохо, что по существу не будет производить нужного действия, и очень вероятно, что будет не способна делиться. Другие, нормальные клетки будут, когда необходимо, продолжать деление и будут вытеснять ее из жизни. Таким образом ткань в целом остается нормальной, несмотря на случайные мутации.

    Главное исключение — мутация, направленная на процесс роста. Нормальные клетки в ткани растут и делятся, только когда это необходимо, чтобы заменить пропавшие или поврежденные клетки, но у мутировавшей клетки может не хватать механизма, предназначенного для прекращения роста в соответствующее время. Она может только расти и беспомощно множиться, хотя в этом нет необходимости для существования. Подобный анархический рост — это рак, он является наиболее серьезным результатом соматической мутации.

    Иногда молекула ДНК мутирует таким образом, что при определенных условиях может работать лучше. Это происходит не часто, но клетки, содержащие ее, будут выживать и процветать, так что естественный отбор Действует не только в отношении целых организмов, но и в отношении программы ДНК. Так, должно быть, и образовались первые молекулы ДНК из простых строительных блоков, благодаря случайным факторам, пока не сформировалась одна, способная к копированию, а эволюция довершила остальное.

    Время от времени клетки спермы или яйцеклетки образуются с несовершенно повторенной ДНК. Это приводит к мутации в потомстве. Опять же большинство мутаций неблагоприятны, так что претерпевший мутацию приплод либо не способен развиваться, либо умирает молодым, либо, если даже остается жить и имеет потомство, то оно постепенно вытесняется более эффективными особями. Благоприятная мутация происходит исключительно случайно, такая мутация утверждает себя и передается потомству.

    Хотя благоприятные мутации происходят значительно реже, чем неблагоприятные, именно первые имеют тенденцию выживать и вытеснять последние. По этой причине любой, кто наблюдает за ходом эволюции, может увидеть, что за этим как бы стоит цель: организм как бы сознательно пытается усовершенствовать себя.

    Трудно поверить, что случайные процессы, успехи и неудачи могут дать такие результаты, которые мы сегодня видим вокруг себя. Но при наличии достаточного количества времени и при наличии системы естественного отбора, которая допускает гибель миллионов особей, так, что могут утвердиться немногие улучшения, случайные процессы делают свою работу.

    Генетический груз

    Но почему молекулы ДНК то и дело копируют себя несовершенно? Копирование — случайный процесс. Когда нуклеотидные строительные блоки выстраиваются против пряди ДНК, только один-единственный определенный нуклеотид должен идеально соответствовать по строению каждому расположенному против него определенному нуклеотиду уже существующей пряди. Только этот должен, так сказать, приклеиться. Нуклеотиды остальных трех разновидностей не должны делать этого.

    Однако при слепом движении молекул нуклеотид, которому вообще говоря, здесь не место, не успев отскочить, может быть зажат с обеих сторон другими нуклеогидами, которые преждевременно заняли соответствующие распорядку свои места. Теперь у нас новая прядь ДНК, которая не точно соответствует тому, что требовалось, а отличается одним нуклеотидом и поэтому будет производить фермент, отличающийся одной аминокислотой. Несмотря на это, несовершенная прядь оформилась в новую модель и в новых копированиях будет воспроизводить себя, а не первоначальный оригинал.

    При естественных обстоятельствах шанс несовершенного копирования пряди ДНК только 1 на 50000-100 000 случаев, но в живых организмах существует так много генов и происходит так много копирований, что шанс мутации становится непреложным фактом.

    У людей примерно 2 из 5 оплодотворенных яйцеклеток содержат по крайней мере один мутировавший ген. Это означает, что около 40 процентов людей так или иначе являются мутантами в отношении своих родителей. Поскольку мутировавший ген передается по наследству, покуда не «вымрет», по некоторым оценкам каждый человек несет в себе примерно восемь мутировавших генов — и почти во всех случаях мутация генов является неблагоприятной. (Тем обстоятельством, что мы почти не ощущаем этого, мы обязаны тому, что гены формируются парами, и если один ненормален, то нас поддерживает другой.) Вероятность мутаций зависит лишь от слепой случайности. Существуют факторы, которые увеличивают вероятность несовершенного копирования, например, различные химикаты, которые вмешиваются в четкую работу ДНК и затрудняют ее стремление работать только с соответствующими нуклеотидами. Поскольку молекула ДНК очень сложна, в нее способны внедряться многие химикаты. Такие химикаты называют «мутагенами».

    Существуют также субатомные частицы с их выходками. Молекулы ДНК спрятаны в хромосомах, которые сами погребены в ядрах, в центре клеток, и химикатам не так-то просто добраться до них. Субатомные частицы, однако, легко пробиваются в клетки, и, ударяя в молекулы ДНК, способны выбить из их структуры какие-либо атомы или изменить их физически.

    Работа молекул ДНК в этом случае будет нарушена настолько, что они вообще потеряют способность копироваться, и клетка может погибнуть. Если большое число жизненно важных клеток убито, индивидуум может погибнуть от «лучевой болезни».

    При менее сильном воздействии клетка может выжить, а произойдет лишь мутация. (Мутация может вызывать заболевание раком, и известно, что энергетическое излучение канцерогенно точно так же, как и мутагенно. Собственно, одно подразумевает другое.) Конечно, если яйцеклетки или клетки спермы испытывают такое воздействие, образуются отпрыски с мутациями, иногда настолько радикальными, что наблюдаются серьезные врожденные дефекты. (Это может быть вызвано также и химическими мутагенами.) Мутагенный эффект радиации был впервые продемонстрирован в 1926 году американским биологом Германом Джозефом Мюллером (1890–1967), когда он исследовал мутации на плодовых мушках; для удобства он размножал их и подставлял под рентгеновские лучи.

    Рентгеновские лучи и радиоактивное излучение были недоступны до двадцатого века, но это не означает, что тогда не было мутагенных форм радиации. На протяжении жизни солнечный свет существовал всегда, а солнечный свет — тоже слабый мутаген, так как содержит излучение (поэтому слишком длительное пребывание на солнце увеличивает вероятность заболевания раком кожи).

    Кроме того, существуют космические лучи, которым жизнь подвергается постоянно. Нет сомнения (хотя кое-кто может не согласиться), что космические лучи вследствие мутаций, которые они вызывают, были главной движущей силой эволюции в течение последних нескольких миллиардов лет. Так что восемь мутировавших генов на индивидуум — почти все вредоносные — это, так сказать, цена, которую мы платим за кое-какие благоприобретения, от которых зависит будущее.

    Конечно, если немного — хорошо, это не означает, что много — лучше. Наиболее неблагоприятные мутации, возникшие по какой бы то ни было причине, подтачивают здоровье данной особи, поскольку в результате дают ряд индивидуумов, так сказать, «ниже нормы». Это «генетический груз» для таких особей (термин впервые применен Г. Дж. Мюллером). Однако имеется все же существенный процент индивидуумов без серьезных неблагоприятных мутаций, а также немного индивидуумов, обладающих благоприятными мутациями. Им удается последовательно перебороть и выпестовать ненормативных, так что в целом особи выживают и развиваются, несмотря на генетический груз.

    Но что, если генетический груз возрастет из-за того, что по какой-то причине возрастет частота мутаций? Это означает, что будет больше индивидуумов ниже нормы и меньше нормальных, лучших по качествам особей. При этих условиях просто может не оказаться достаточного количества нормальных или лучших по качествам индивидуумов, чтобы сохранить особи растущими, несмотря на всех ненормативных индивидуумов. Короче говоря, увеличивающийся генетический груз не ускорит эволюцию, как можно было бы предполагать, а ослабит особи, приведет к их вымиранию. Малый генетический груз — полезен, большой — смертелен.

    Но что может вызвать увеличение частоты мутаций? Случайные факторы остаются случайными, и большинство мутагенных факторов в прошлой истории — солнечный свет, химикаты, естественная радиоактивность — были более или менее постоянными в своем влиянии. А как насчет космических лучей? Что, если по какой-либо причине интенсивность космических лучей, достигающих Земли, увеличится? Не может ли это ослабить многие особи и привести к великому умиранию благодаря генетическому грузу, который станет слишком большим для того, чтобы выжить?

    Даже если согласиться с тем, что имевшие место великие умирания в истории Земли были связаны с высыханием внутренних морей, не могло ли привести к великому умиранию также и неожиданное увеличение интенсивности космических лучей? Вероятно, могло, но что в таком случае вызывало неожиданное увеличение интенсивности космических лучей?

    Одна возможная причина — расширение сферы действия сверхновых, которые, в конечном счете, являются основным источником космических лучей. Но это маловероятно. В сотнях миллиардов звезд нашей Галактики общее количество сверхновых из года в год, из века в век, остается приблизительно одним и тем же. А не могло ли быть так, что расположение сверхновых меняется, что одно время большее их число находится на другом конце Галактики, а в другое время большее число их находится на нашем конце?

    Собственно, это не воздействовало бы на интенсивность космических лучей так сильно, как можно подумать. Поскольку частицы космических лучей движутся искривленными путями благодаря большому числу обширных магнитных полей в Галактике, они имеют тенденцию, так сказать, размазываться, распределяться равномерно по Галактике, независимо от места происхождения.

    Сверхновыми постоянно образуются большие количества частиц новых космических лучей, в меньшем количестве их образуют обычные гигантские звезды, частицы эти постоянно ускоряются и становятся более энергетичными. При достаточном ускорении они вообще улетают из Галактики, к тому же большие их количества постоянно попадают в звезды и другие объекты Галактики. Возможно, за 15 миллиардов лет существования Галактики установилось равновесие, и сколько частиц космических лучей образуется, столько же и исчезает. По этой причине мы можем считать, что интенсивность космических лучей вблизи Земли будет оставаться постоянной.

    Существует, однако, одно возможное исключение. Если бы сверхновая взорвалась вблизи Земли, это могло бы вызвать бедствие. Я рассматривал ранее такие близкие сверхновые и пришел к выводу, что шансы такого происшествия в обозримом будущем очень малы. Даже в этом случае у меня речь шла только о свете и о тепле, которые мы могли бы получить от подобного объекта. А как же насчет космических лучей, которые бы мы получили, поскольку расстояние от близкой сверхновой было бы для нас слишком малым, чтобы рассчитывать на достаточное их распространение и рассеяние их магнитными полями?

    В 1968 году американские ученые К. Д. Терри и В. X. Такер обратили внимание на довольно большую сверхновую, которая излучала космические лучи в триллион раз интенсивнее, чем Солнце, и это излучение в космос продолжалось по крайней мере неделю. Если бы такая сверхновая была от нас на расстоянии хотя бы в 16 световых лет, энергия космических лучей, достигающих нас даже с такого огромного расстояния, была бы равна суммарной солнечной радиации за этот же период, и этого должно было бы хватить, чтобы каждый из нас (возможно, также и большинство других форм жизни) получил смертельную дозу радиации. Дополнительное тепло, доставляемое такой сверхновой, и тепловая волна, которая получилась бы в результате, в таком случае не имели бы уже никакого значения.

    Конечно, нет настолько близких к нам звезд, способных взорваться в гигантскую сверхновую, такой ситуации не было в прошлом и, насколько нам известно, не ожидается и в обозримом будущем. Однако сверхновая, находящаяся гораздо дальше, могла бы тоже причинить значительный вред.

    В настоящее время интенсивность космических лучей, достигающих атмосферы Земли, составляет около 0,03 рентгена в год, и потребовалось бы в 500 раз больше, или 15 рентген в год, чтобы причинить вред. И все же по частоте сверхновых, по их случайным позициям и размерам Терри и Такер рассчитали, что вследствие взрывов сверхновых Земля могла бы получать концентрированную дозу излучения в 200 рентген, примерно каждые 10 миллионов лет, и значительные дозы, соответственно, в более длительные интервалы. За 600 миллионов лет, со времени, до которого добирается изучение окаменелостей, существует реальный шанс, что по крайней мере одна вспышка в 25 000 рентген достигла нас. Безусловно, это могло бы привести к бедствию, но существуют естественные механизмы, снижающие эффективность бомбардировки космическими лучами.

    Например, я только что говорил об интенсивности космических лучей, достигающих атмосферы Земли. Это было сказано намеренно, потому что атмосфера не вполне прозрачна для космических лучей. Когда космические частицы несутся мимо атомов и молекул, составляющих атмосферу, рано или поздно происходят столкновения. Атомы и молекулы разбиваются вдребезги, и частицы вылетают из них уже как «вторичная радиация».

    Вторичная радиация менее энергетична, чем «основная радиация», состоящая из частиц космических лучей в открытом космосе, но она все еще достаточно энергетична, чтобы принести немало вреда. Однако и вторичная радиация претерпевает дальнейшие столкновения с атомами и молекулами в атмосфере Земли, и к тому времени, когда летящие частицы достигают поверхности Земли, атмосфера поглощает существенную часть энергии.

    Короче говоря, атмосфера действует, как защитное одеяло, не до конца эффективное, но не такое уж и неэффективное. Астронавты на околоземной орбите или на Луне подвергаются более интенсивной бомбардировке космическими лучами, чем мы на поверхности Земли, и это приходится учитывать.

    Астронавты во время сравнительно коротких выходов в космос могут получить дополнительную дозу радиации, но обитателям космических поселений такая опасность не грозит. Ведь поселения можно спроектировать со стенами, достаточно толстыми, чтобы обеспечить по крайней мере такую же защиту от космических лучей, какую дает атмосфера Земли.

    Правда, если наступит время, когда основная часть человечества разместится в космических поселениях и сочтет себя свободной от перипетий Солнца — она будет безразлично относиться к тому, что Солнце превратится сначала в красного гиганта, а потом станет белым карликом, — прилив и отлив потока космических лучей может оказаться его главной заботой и главной угрозой катастрофы.

    Возвращаясь снова к Земле, замечу: пока атмосфера сохраняет свою настоящую структуру и состав, нет причин полагать, что ее защитное действие ослабнет и сделает нас более уязвимыми при увеличении интенсивности космических лучей. Существует, однако, и другой вид защиты, который нам предоставляет Земля. Он более эффективен, но зато менее долговечен, и чтобы это объяснить, понадобится небольшое отступление.

    Магнитное поле Земли

    Уже за 600 лет до н. э. греческий философ Фалес (624–546 до н. э.) впервые проводил опыты с естественными магнитными минералами и открыл, что они могут притягивать железо. Со временем узнали, что минерал магнитный железняк (который известен нам, как окись железа) можно использовать для притягивания тонких кусочков стали, которые потом проявляют это свойство более интенсивно, чем сам магнитный железняк.

    В средние века открыли, что если намагниченную иголку поместить на легкий плавающий предмет, то эта иголка непременно остановится в направлении север-юг. Один конец иголки был поэтому назван северным магнитным полюсом, а другой — южным. Первыми, заметившими этот факт незадолго до 1100 года, были китайцы, приблизительно век спустя он стал известен и европейцам.

    Именно использование намагниченной иголки в качестве «морского компаса» обезопасило европейских штурманов в море и позволило совершать дальние путешествия, а вскоре после 1400 года привело к великим географическим открытиям, которые дали Европе мировое господство почти на пять веков. (Финикийцы, викинги и полинезийцы совершали замечательные морские путешествия без компасов, но подвергались большому риску.) Способность иглы компаса казалась поначалу весьма загадочной, и наименее мистическое объяснение состояло в том, что на дальнем севере находится гора из магнитной руды и она притягивает иголки. Естественно, рождались рассказы о кораблях, рискнувших приблизиться к этому огромному магниту. В этом случае магнит вытаскивал гвозди из кораблей, корабли распадались на части и тонули. Одна из таких историй содержится в «Тысяче и одной ночи».

    Английский врач Уильям Гильберт (1544–1603) дал в 1600 году гораздо более интересное объяснение. Он придал куску магнитного железняка форму шара и исследовал направления, которые указывала игла компаса рядом с этим шаром. Он установил, что она вела себя в отношении магнитного шара точно так же, как и в отношении Земли. Он заключил из этого, что Земля представляет собой огромный магнит с северным магнитным полюсом в Арктике и южным магнитным полюсом в Антарктике.

    В 1831 году шотландским исследователем Джеймсом Кларком Россом (1800–1862) было определено местоположение северного магнитного полюса, он оказался на западном берегу полуострова Бутия на крайнем севере Северной Америки. На этом месте северный конец иглы компаса указал прямо вниз. Местоположение южного магнитного полюса было определено в 1909 году австралийским геологом Эджвортом Дэвидом (1858–1934) и британским исследователем Дугласом Моусоном (1882–1958), он оказался на краю Антарктиды.

    Но почему Земля — магнит? С тех пор как английский ученый Генри Кавендиш (1731–1810) измерил в 1798 году массу Земли, стало ясно, что плотность Земли слишком высока, чтобы она состояла только из камня. Родилась идея, что центр ее состоит из металла. Так как уже было известно, что большинство метеоритов состоит из железа и никеля в соотношении примерно 10:1, возникла мысль, что и центр Земли может состоять из подобной же смеси металлов. Об этом впервые заявил в 1866 году французский геолог Габриэль Август Дебре (1814–1896).

    В конце девятнадцатого века были детально изучены волны землетрясений, распространяющиеся по Земле. Было доказано, что эти волны, проникая на глубину до 2900 километров, резко изменяют направление.

    В 1906 году предположили, что на этой глубине происходит резкое изменение химического состава, что волны здесь, пройдя каменную мантию, достигают металлического ядра. Теперь это подтвердилось. Земля имеет железо-никелевое ядро, то есть сферу приблизительно 6900 километров в диаметре. Это ядро составляет одну шестую объема Земли, а из-за своей высокой плотности — одну треть ее массы.

    Есть искушение предположить, что это-то железное ядро и является магнитом, и что это объясняет поведение стрелки компаса. Однако это не так. В 1896 году Французский физик Пьер Кюри (1859–1906) доказал, что магнитная субстанция теряет магнетизм, если ее нагреть до достаточно высокой температуры. Железо теряет свои магнитные свойства в точке Кюри — 760 °C. Для никеля точка Кюри составляет 356 °C.

    Возможно, температура железо-никелевого ядра выше точки Кюри? Действительно, волны некоторых типов землетрясений никогда не проникают в ядро из мантии. Они относятся к таким волнам, которые не могут двигаться по жидкостному телу, и выходит, что ядро — жидкое, и оно достаточно горячо, чтобы состоять из жидкого никелевого железа. Точка плавления железа 1535 °C при обычных условиях и должна быть еще выше при большом давлении на границе ядра, уже только из этого следует, что ядро не может быть таким же магнитом, каким был кусок обычного железа.

    Однако наличие жидкого ядра открыло новые возможности. В 1820 году датский физик Ганс Христиан Эрстед (1777–1851) открыл возможность производить магнитные эффекты с помощью электричества (электромагнетизм). Если электрический ток проходит по проволочной спирали, возникает магнитный эффект, очень похожий на тот, который производил бы обычный брусочный магнит, если бы мы мысленно разместили его вдоль оси спирали.

    Основываясь на этом, американский геофизик немецкого происхождения Вальтер Мориц Эльзассер (р. 1904) в 1939 году высказал предположение, что вращение Земли может образовывать в ее жидком ядре завихрения, своего рода обширные, медленные водовороты расплавленного никелевого железа. Атомы состоят из электрически заряженных субатомных частиц, и из-за определенной структуры атома железа такие водовороты могли бы создавать эффект электрического тока, текущего по кругу.

    Поскольку водовороты образуются благодаря вращению с запада на восток, они бы тоже восприняли движение с запада на восток, и железо-никелевое ядро тогда бы действовало как брусок магнита, поставленный по вертикали север-юг.

    Магнитное поле Земли, однако, не всегда постоянно. Магнитные полюса с годами меняют свое положение и по какой-то причине, которую мы пока не можем объяснить, находятся примерно в 1600 километрах от географических полюсов. К тому же магнитные полюса расположены не точно на противоположных сторонах Земли. Линия, опущенная от северного магнитного полюса к южному, пройдет приблизительно в 1100 километрах в стороне от центра Земли. Вдобавок магнитное поле изменяется из года в год по напряженности.

    Сопоставив все эти вещи, можно задуматься над тем, что же произошло с магнитным полем в прошлом и что может произойти с ним в далеком будущем. К счастью, есть способ разобраться по крайней мере с прошлым.

    Среди компонентов лавы, извергаемой вулканами, обнаруживаются различные слабо магнитные минералы. Молекулы этих минералов имеют свойство ориентироваться вдоль магнитных силовых линий. Пока минералы в жидком виде, это свойство преодолевается беспорядочным движением молекул, связанным с высокой температурой. Однако, когда вулканическая порода медленно остывает, беспорядочное движение молекул замедляется, и в конечном счете молекулы ориентируются на север и юг. Когда лава застывает, эта ориентация фиксируется. Молекула за молекулой застывают, и наконец образуются целые кристаллы, в которых мы можем обнаружить их магнитные полюса: северный полюс, указывающий на север, и южный полюс, указывающий на юг, точно так же как и магнитный компас. (Мы можем установить, где северный полюс кристалла или любого другого магнита, так как он отталкивает северный полюс стрелки компаса.) В 1906 году французский физик Бернар Брюнес обнаружил, что некоторые вулканические кристаллы намагничены в направлении, противоположном нормальному. Их северные магнитные полюса (как установлено стрелкой компаса) указывали в южном направлении. Спустя годы после оригинального открытия Брюнеса было изучено огромное количество вулканических пород и установлено, что хотя во многих случаях у кристаллов северные магнитные полюса указывают на север, как и обычно, во многих других случаях у кристаллов их северные магнитные полюса указывают на юг. Очевидно, магнитное поле Земли периодически меняется на противоположное.

    Измеряя возраст изучаемых горных пород (всеми известными методами), установили, что последние 700 000 лет магнитное поле находилось в его настоящем положении, которое мы назовем «нормальным». До этого в течение примерно миллиона лет оно было в «противоположном» положении, за исключением двух периодов по 100 000 лет, в течение которых оно было нормальным.

    В общем, за последние 76 миллионов лет установлено не менее 171 перемены расположения магнитного поля. Средняя продолжительность периода полной перемены положения составляет около 450 000 лет, а два возможных положения, нормальное и противоположное, занимают в конечном счете такое же количество времени. Однако время между переменами положения сильно изменяется. Самое продолжительное время между переменами положения составляет 3 миллиона лет, самое короткое — 50 000 лет.

    Каким же образом происходит перемена положения на обратное? Неужели магнитные полюса Земли только и знают, что все время гуляют по земному шару, один прогуливается от Арктики до Антарктики, другой — в обратном направлении? В таком случае должны быть обнаружены кристаллы, которые ориентированы примерно на восток или на запад, а их нет.

    Более вероятным представляется то, что просто изменяется напряженность магнитного поля. Она падает порой до нуля, а затем снова растет, но уже в другом направлении. Со временем она опять падает до нуля и опять начинает расти уже в первоначальном направлении, и так далее.

    Это некоторым образом похоже на то, что происходит с циклом солнечных пятен. Солнечные пятна увеличиваются количественно, затем уменьшаются, затем начинают увеличиваться снова в обратном направлении по отношению к своему магнитному полю. Затем они уменьшаются опять и снова начинают увеличиваться в первоначальном направлении. Как пики солнечных пятен попеременно нормальные и обратные, точно так и пики магнитного поля Земли попеременно нормальные и обратные. Только изменения магнитного поля Земли намного менее регулярны, чем цикл солнечных пятен.

    Представляется вероятным, что изменение напряженности магнитного поля Земли и перемена его ориентации на противоположную связаны с самой Землей, с изменением скорости и направления вращения вещества в жидком ядре Земли. Иначе говоря, жидкое ядро вращается в каком-то определенном направлении, затем вращение замедляется до кратковременной полной остановки, после чего начинается вращение в другом направлении, затем вращение опять замедляется до полной остановки и опять начинается в другом направлении, и так далее. Отчего направление меняется, отчего изменяется скорость и отчего так неправильно, — мы пока сказать не можем. Но зато мы очень хорошо знаем, как магнитное поле Земли влияет на ее бомбардировку космическими лучами.

    В 20-х годах XIX века английский ученый Майкл Фарадей (1791–1867) разработал теорию «силовых линий». Это воображаемые линии, идущие по кривой от северного магнитного полюса и отмечающие путь, вдоль которого напряженность магнитного поля имеет постоянное значение.

    Намагниченная частица может свободно двигаться вдоль силовых линий. Но чтобы пересечь силовые линии, требуется энергия.

    Магнитное поле Земли окружает Землю магнитными силовыми линиями, соединяющими ее магнитные полюса. Любая заряженная частица, летящая из открытого космоса, чтобы достигнуть поверхности Земли должна пересечь эти силовые линии, а при этом она теряет энергию. Если вначале она обладает небольшим количеством энергии, она может лишиться ее, так и не достигнув земной поверхности. В таком случае она способна двигаться только вдоль силовой линии, по спирали, вплотную к ней и переходя от северного магнитного полюса Земли к южному, снова к северному, и снова к южному, и так далее.

    Это происходит со многими частицами солнечного ветра, поэтому всегда существует большое количество заряженных частиц, двигающихся вдоль силовых линий магнитного поля Земли и образующих то, что мы называем «магнитосферой», которая находится далеко вне атмосферы.

    Силовые линии сходятся у двух магнитных полюсов, и там частицы, следуя по этим линиям, движутся к поверхности Земли и ударяют в верхние слои атмосферы. В процессе столкновения с атомами и молекулами они отдают свою энергию и порождают изумительное по красоте явление ночного полярного неба: на севере — северное сияние, на юге — южное сияние.

    Частицы, которые особенно энергетичны, могут пересечь все силовые линии и нанести удар по поверхности Земли, но всегда с меньшей энергией, чем начальная. Кроме того, они отклоняются на север и юг, и чем меньшей энергией они обладают, тем дальше они отклоняются.

    Космические частицы достаточно энергетичны, чтобы пробить земную поверхность, но они при этом сильно ослабевают и тоже отклоняются, так как существует «широтный эффект». Космические лучи наименее интенсивно проникают к Земле у экватора и наиболее интенсивно на севере и юге.

    Плотность жизни на суше тоже уменьшается по мере продвижения от тропиков к полюсам (морская жизнь до определенной степени защищена толщей воды), и наличие широтного эффекта приводит к общему конечному результату, который состоит не только в том, что космические лучи ослабевают в магнитном поле, но они еще и сдвигаются от регионов с интенсивной жизнью к регионам с менее интенсивной жизнью.

    Даже несмотря на то, что космические лучи на магнитных полюсах, где они наиболее интенсивны, как представляется, не влияют на жизнь, это совсем не означает, что мутагенный эффект космических лучей ослабевает благодаря существованию магнитного поля Земли.

    Когда уменьшается напряженность магнитного поля Земли, его защищающее от космических лучей действие ослабевает. В периоды, когда магнитное поле претерпевает перемену направления на обратное, Земля какое-то время остается вообще без магнитного поля, и поток космических лучей не ослабляется и не отклоняется. В этот период тропическая и умеренные зоны, которые несут основной груз жизни на суше (включая человеческую жизнь), подвергаются большему воздействию космических лучей, чем в какое-либо иное время.

    Что если в период такой перемены магнитного поля поблизости случится взрыв сверхновой? Ее воздействие на Землю будет значительно большим, чем при наличии у Земли магнитного поля. Не случилось ли так, что одно (или более) из великих умираний произошло как раз тогда, когда близлежащая сверхновая взорвалась в период перемены направления магнитного поля на обратное?

    Это маловероятно, близкое расположение сверхновой случается крайне редко, и перемена направления магнитного поля на обратное тоже происходит редко. Совпадение двух очень редких явлений гораздо менее вероятно, чем возникновение одного из них. И все же совпадение возможно. А если так, то что же насчет будущего?

    Магнитное поле Земли, по-видимому, потеряло 15 процентов силы, которую оно имело в 1670 году, когда впервые производились надежные измерения, и при настоящем темпе падения оно достигнет нуля к 4000 году нашей эры. Даже если не будет общего увеличения космических частиц из-за находящейся поблизости сверхновой, число частиц, достигающих места главной концентрации человечества, будет примерно вдвое больше, чем сейчас, и генетический груз человечества может в результате заметно увеличиться.

    Эффект, вероятно, не будет очень сильным, если поблизости не взорвется сверхновая, а этого не может быть, потому что ближайшей сверхновой к 4000 году является Бетельгейзе, а она не настолько близко, чтобы из-за этого волноваться, даже в отсутствие магнитного поля.

    Конечно, совпадение может произойти в более отдаленном будущем, но ни близлежащая сверхновая, ни перемена на обратное магнитного поля не смогут, скорее всего, застать нас врасплох. И те и другие события дадут достаточно заблаговременное предупреждение и возможность подготовиться к защите от внезапного прорыва космических лучей.

    Однако это пока единственная, на мой взгляд, катастрофа, которая (повторяю) могла бы воздействовать на космические поселения более опасно, чем на Землю.


    Примечания:



    7

    На самом деле они представляют собой стальной сплав, в них содержатся никель и кобальт.



    8

    Вот довольно похожая ситуация: вскидывают в воздух иголку и нитку по отдельности и надеются, что нитка сама собой вденется в иголку; или держат в одной руке иголку, в другой — нитку и неторопливо вдевают ее в иголку. Первое — это как реакция в клетке без фермента, а второе — та же самая реакция в клетке с ферментом.







     


    Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх