• Прошлое, настоящее и будущее Солнечной системы
  • Как возникла жизнь
  • Зеленый покров Земли
  • Мы видим мир
  • Горячее дыхание светила
  • Энергия неиссякаемая и вездесущая
  • Глава I.

    Солнце и жизнь на Земле

    Возникновение жизни на поверхности Земли — одной из планет, вращающихся вокруг Солнца, стало возможным на определенном этапе эволюции солнечной системы. В силу сочетания таких факторов, как соотношение масс Солнца и Земли, расстояние между ними, интенсивность солнечного излучения, прозрачность и состав земной ат­мосферы и т. п., создались условия для возникновения простейших форм жизни. Но еще задолго до этого судьба Земли была теснейшим образом связана с Солнцем, в семье которого — Солнечной системе — Земля казалась с самого начала одним из обычных, ничем не примеча­тельных отпрысков.

    Прошлое, настоящее и будущее Солнечной системы

    Солнце — это звезда. По своим размерам, массе, температуре поверхности, световому потоку Солнце принадлежит к числу наиболее распространенных, типичных для нашей Галактики звезд. Это сравнительно холодная желтая звезда (температура поверхности Солнца «всего» около 6000°) спектрального класса G2 —заурядное светило среди миллиардов звезд. На диаграмме Герцшпрунга — Рессела (рис. 1) графически изображена связь между светимостью звезды (зависящей от ее массы, размеров, температуры и характеризующейся абсолютной звездной величиной) и спектральным составом ее излучения (спектральный класс, обусловленный температурой поверхности звезды). Солнце, обозначенное крестиком, расположено в самой середине так называемой главной последовательности — сравнительно узкой полосы, протянувшейся от левого верхнего к правому нижнему углу диаграммы.

    Рис. 1. Диаграмма Герцшпрунга — Рессела для ярчайших звезд неба и звезд, расположенных ближе 4 парсек к Солнцу. Указаны последовательность сверхгигантов (Iа), гигантов (III) и главная последовательность (V), в центре которой расположено Солнце. Шкала показателя цвета В — V соответствует спектральным классам звезд главной последовательности. Звездочкой обозначены ярчайшие звезды неба, точкой — звезды, расположенные ближе 4 парсек к Солнцу.

    Но в недрах этой ничем не примечательной звезды вот уже 5 млрд. лет совершается таинство освобождения и излучения в мировое пространство гигантских количеств лучистой энергии. Этот процесс и есть главнейшая предпосылка возникновения, существования и развития жизни. Эволюция Земли, возникновение и прогресс жизни на ее поверхности есть частный случай, одно из многочисленных следствий существования нашего светила, эволюции солнечной системы.

    Как и другие звезды, Солнце, очевидно, возникло из газопылевого облака межзвездной материи под влиянием взаимного притяжения частиц. Силы всемирного тяготения довольно быстро (по астрономическим масштабам) превращают такое облако в относительно плотный и непрозрачный газовый шар. По мере гравитационного сжатия (а силы тяготения тем больше, чем больше масса шара) давление и температура в центральных областях будущей звезды довольно быстро растут. Газовый шар начинает светиться. Но только тогда, когда разогрев его недр запускает термоядерную топку, когда в процессе самосожжения водорода начинает освобождаться внутриядерная энергия, а светимость и температура газа резко возрастают,— газовый шар становится звездой. При этом давление и температура в ее недрах достигают величин, препятствующих дальнейшему гравитационному сжатию. Размеры звезды становятся стабильными.

    Если температура поверхности Солнца не превышает 6000° С, то в его центральных областях она достигает 15—25 млн. градусов. Каждую секунду Солнце излучает 4·1033 эрг световой энергии, что соответствует превращению 600 млн. т водорода в гелий. И это самосожжение продолжается с постоянной интенсивностью не менее 4,5 млрд. лет! Таковы масштабы процесса, которому мы с вами обязаны жизнью. Конечно, масса Солнца огромна, выражается поистине астрономическими цифрами: 2,00·1033 г или 2,00·1027 т, что соответствует 333 343 массам Земли. За миллиарды лет существования Солнца лишь доли процента этой гигантской массы улетучились в виде излучения. Но, разумеется, всему есть предел. Устойчивое свечение звезды за счет термоядерных реакций не может продолжаться бесконечно долго. То Солнце, которое мы видим и можем изучать — это только один из этапов в биографии звезды, период в ее миллиардолетней истории.

    Вещество наружных слоев звезды вследствие относительно низкой температуры и слабого перемешивания о веществом ядра в термоядерных реакциях не участвует. Высокое содержание водорода (и гелия) в нем сохраняется неизменным. В центральных же областях звезды водород и гелий постепенно выгорают, выделение термоядерной энергии начинает уменьшаться и, наконец, прекращается. Одновременно нарушается устойчивое равновесие между силами тяготения и силами внутреннего давления, которое миллиарды лет поддерживало стабильное существование и свечение звезды. Противодействие силам тяготения становится недостаточным — ядро звезды начинает сжиматься и по мере уплотнения разогревается.

    Термоядерные реакции продолжаются в сравнительно тонком слое между горячим и плотным ядром звезды и сравнительно холодными, разреженными периферическими слоями. Дальнейшие судьбы ядра и периферии звезды различны. Размеры звезды и ее светимость постепенно возрастают: она становится красным гигантом, вступает в период нестабильности, сравнительно быстрой эволюции. Когда термоядерные реакции исчерпывают себя, то в тонком слое, окружающем плотное ядро, звезда как бы «сбрасывает» свою наружную оболочку. Периферические слои звезды удаляются с большей или меньшей скоростью от ядра и через несколько десятков тысяч лет рассеются в мировом пространстве. Так за стадией красного гиганта возникает планетарная туманность, а после рассеивания ее наружной оболочки остается очень горячая небольшая плотная звезда. Постепенно остывая, она превращается в белый карлик — заключительный этап эволюции звезд.

    Такова общая схема. Скорости прохождения отдельных этапов зависят главным образом от первоначальной массы звезды. Те многочисленные звезды нашей Галактики, масса которых больше Солнца хотя бы па 15—20%, эволюционируют значительно быстрее Солнца. Многие из них уже достигли стадии белого карлика. А если масса звезды превышает определенную критическую величину (примерно в 1,5 раза больше солнечной), ее развитие оказывается еще более бурным. Выгорание водорода и гелия в центральных областях массивных звезд приводит к более интенсивному гравитационному сжатию и завершается грандиозной космической катастрофой. Сбрасывание оболочки такой звезды происходит в форме взрыва, во время которого светимость, яркость звезды внезапно возрастает в десятки и сотни тысяч раз. На месте скромной и малозаметной звездочки (в силу ее отдаленности от Земли) вдруг вспыхивает яркая звезда, свет которой может конкурировать даже с полной Луной. Такие звезды астрономы называют сверхновыми.

    Древние китайские летописи рассказывают, что в 1049 г. произошла вспышка ярчайшей звезды. В современные телескопы удалось рассмотреть в том участке неба, где когда-то зажглась сверхновая, так называемую Крабовидную туманность. В центре се сияет довольно яркая звезда, а оболочка (собственно, туманность) разлетается от нее с такой скоростью, что обратный расчет подтверждает: эта туманность действительно образовалась в середине XI в.

    Взрыв сверхновой — это гигантский термоядерный котел, в котором рождаются тяжелые элементы (расположенные дальше в таблице Менделеева, чем железо), не образующиеся в недрах звезд в обычных условиях. Взрыв звезды разбрасывает осколки ее вещества, часть которых затем под влиянием сил тяготения вновь стягивается в одно тело и дает начало новому светилу — звезде второго поколения, масса которой существенно меньше первоначальной. Поскольку возраст нашей Галактики — около 20 млрд. лет, некоторые ее звезды могли пройти даже два-три и более подобных периода взрывного уменьшения массы, пока она не достигла значения ниже критического. Благодаря спектральным исследованиям ученые обнаружили в составе Солнца почти все элементы таблицы Менделеева, в том числе и более тяжелые, чем железо; это позволяет думать, что наше светило — звезда второго поколения.

    Расчеты ученых показывают, что по крайней мере еще 6 млрд. лет Солнце будет устойчиво и стабильно излучать энергию. Только примерно через 8 млрд. лет оно станет красным гигантом. Но еще задолго до того, как раскаленные слои красного чудовища, в которое превратится когда-то наше доброе Солнце, поглотят все околосолнечное пространство с орбитами Меркурия, Венеры и Земли, все живое на Земле будет сожжено тысячекратно возросшим смертоносным потоком излучения. К тому времени, когда Земля перестанет быть уютным жилищем для людей, человечество, несомненно, сумеет осуществить переселение на планеты более молодых звездных систем, отыщет или создаст условия для своего дальнейшего нормального существования и развития.

    История Земли и других планет солнечной системы теснейшим образом связана с эволюцией центрального светила. Разнообразные научные теории, пытающиеся объяснить возникновение Земли и планет, так или иначе связывают его с Солнцем. Одна из теорий, выдвинутая в середине XVIII в. французским ученым Ж. Бюффоном, а в XX в. развитая американскими учеными Чемберленом и Мультоном и английскими физиками Дж. Джинсом и Г. Джеффрисом, прямо предполагала, что Земля и другие планеты состоят из вещества Солнца. Чтобы объяснить, как большая масса вещества оказалась вырванной из объятий солнечного тяготения, пришлось допустить столкновение Солнца с другой звездой (Джине и Джеффрис) или кометой (Бюффон), либо чудовищной силы взрыв на самом Солнце (Чемберлен и Мультон), либо прохождение вблизи Солнца другой звезды, вырвавшей значительную массу вещества из сферы притяжения Солнца.

    Так или иначе, эта теория связывала возникновение планет с крайне редким и маловероятным событием и, следовательно, признавала исключительность солнечной планетной системы, земной жизни. Вещество Земли и других планет, согласно этой теории, было сначала расплавленным, а затем остыло.

    По мере накопления знаний о Земле и о Вселенной ошибочность этой теории становилась все более очевидной. Косвенные данные, а также прямые наблюдения убедили ученых, что планетные системы есть, по-видимому, у большинства звезд, расположенных на расстоянии 20—30 световых лет от Солнца. Значит, солнечная система — не исключение, а скорее правило. Для возникновения планет должен существовать общий и постоянно действующий механизм, не имеющий ничего общего с гипотезой столкновения.

    Изучение земной коры до глубин в 5—7 км привело ученых также к убеждению, что горные породы нашей планеты скорее всего не были с самого начала расплавленными, а подверглись частичному разогреву и расплавлению вторично в результате радиоактивного распада. Значит, Земля (и, вероятно, другие планеты солнечной системы) возникла не из раскаленного солнечного вещества, а из холодной газопылевой материи, которая послужила материалом для образования самого Солнца. Это привело к возрождению некоторых старых представлений и способствовало появлению новых теорий.

    Еще во второй половине XVIII в. немецкий философ Кант и французский математик Лаплас высказали мысль, что Солнце и планеты образовались из одного и того же облака газопылевой материи. По мере сжатия туманности скорость ее вращения увеличивалась, облако сплющивалось в диск. Края диска вращались настолько быстро, что отрывались от него, образовывая ряд колец, расположенных приблизительно в плоскости экватора облака. В конце концов из центральной части диска сформировалось Солнце, а из колец — планеты. Эта теория отлично объясняла процесс образования звездных и планетных систем, не прибегая к помощи столкновений, взрывов и тому подобных маловероятных событий, исходя лишь из закона всемирного тяготения. Простое объяснение получил и факт расположения планетных орбит солнечной системы приблизительно в одной плоскости. Наконец, эта теория предполагает «холодное» образование Земли из того же материала, из которого возникло Солнце. Теория Канта — Лапласа была развита и усовершенствована в XIX—XX вв., но главное ее содержание сохранилось неизменным.

    Наконец, третья группа теорий, также допускающая «холодное» рождение Земли, предполагает, что Солнце в процессе движения вокруг центра Галактики благодаря силам притяжения захватывало вещество газопылевых скоплений, из которого затем формировались планеты. Впервые эту «теорию захвата» выдвинул в 1943 г. академик О. Ю. Шмидт. Американский астрофизик Г. Юри, развивая эту теорию, предположил, что образование небесных тел, подобных Луне, и их обломков происходило задолго до формирования солнечной системы, возможно, в результате взрыва звезды первого поколения — предшественницы Солнца. Под влиянием солнечного ветра и светового давления легкие атомы выталкивались на периферию. Когда началось формирование планет, ближайшие к Солнцу Меркурий, Венера, Земля и Марс оказались построенными из более тяжелого вещества, чем внешние планеты. Лишь сравнительно легкая Луна, по представлениям Юри, является остатком ранней стадии формирования солнечной системы.

    С точки зрения возникновения жизни на Земле теории захвата и одновременного формирования Солнца и планет равно вероятны и допускают одинаковую эволюцию условий на поверхности Земли, холодной планеты, подвергшейся затем вторичному разогреву и частичному расплавлению. Разница заключается лишь в том, что возраст Земли, согласно теории захвата, может быть и больше, и меньше возраста Солнца, тогда как теория Канта — Лапласа в ее современном варианте предполагает примерно одновременное формирование Солнца и планет.

    Наша планета все еще недостаточно исследована, чтобы можно было на основании изучения земных пород четко определить ее возраст. Имеющиеся данные дают ориентировочную цифру, близкую к 4,5 млрд. лет. Наука сегодняшнего дня, очевидно, близка к признанию «холодного» рождения Земли в период, отдаленный от наших дней примерно на 5 млрд. лет. Во всяком случае, современные теории возникновения жизни на Земле исходят из этого допущения. Но и в случае рождения Земли из холодного материала роль Солнца в формировании планетной системы, в эволюции условий на поверхности Земли, необходимых для рождения жизни, огромна.

    Как возникла жизнь

    Многие сотни, а может быть, и тысячи лет ищут люди ответ на этот вопрос. И чем дальше шагает в будущее человечество, тем большую остроту он приобретает. Но конкретные пути и возможности разгадки тайны зарождения земной жизни весьма немногочисленны и очень затруднены. Ведь интересующие нас первые, простейшие, начальные формы жизни, существовавшие 3—3,5 млрд. лет назад (а может быть и ранее), давным-давно исчезли под натиском своих более сильных, более приспособленных к земным условиям потомков. И даже если бы процесс рождения жизни из неживого материала повторился на Земле в наши дни (что маловероятно), человечеству вряд ли удалось бы познакомиться с нашими возродившимися предками: простейшие живые формы неминуемо были бы уничтожены современными микроорганизмами.

    В распоряжении науки остаются лишь косвенные, окольные пути. О возникновении жизни на Земле мы можем судить по разнообразным уцелевшим остаткам ее древних форм (но наиболее интересные, наиболее древние существа не оставили никаких следов!), по разрозненным данным геологии, палеонтологии, астрономии, физики, химии, генетики.

    Еще 100—200 лет назад таких разрозненных данных было совершенно недостаточно, чтобы сделать даже самую первую попытку научного рассмотрения этого вопроса. Великие ученые-биологи XVIII—XIX вв. Луи Пастер, Клод Бернар, Герман Гельмгольц, отвергая идеи «сотворения» живых существ в прошлом, их самозарождения в настоящее время (что было важной победой научной биологии), в то же время не могли противопоставить им строго обоснованную материалистическую теорию возникновения жизни. Если Omnis cellula e cellula (каждая клетка — из клетки), то как возникла первая клетка? Ответ па этот вопрос в рамках метафизического материализма, отрицающего развитие, не мог быть получен. Да и фактов, относящихся к проблеме возникновения жизни, было тогда слишком мало. Вот почему выдающиеся биологи-материалисты XIX в. либо оставляли открытым вопрос о возникновении жизни, либо отстаивали мысль о вечности жизни: «...ничто не рождается, ничто не творится, а все продолжается. Природа не представляет нам ни одного акта творения; она есть вечное продолжение» [К. Бернар. Жизненные явления, общие животным и растениям 1878, с. 53.]. «Пройдет еще немало времени, прежде чем мы сможем сами увидеть, как слизь, или протоплазма, или что-либо в этом роде породит живое существо... Рассуждать в настоящее время о возникновении жизни просто нелепо. С таким же успехом можно говорить о возникновении материи» [Ч. Дарвин. Из письма к Дж. Д. Гукэру, 29 марта 1863 г.].

    В геологическом и тем более в астрономическом масштабе времени столетие — срок ничтожный. Однако последнее столетие принесло несравненно больше фактов, гипотез, теорий, относящихся к проблеме возникновения жизни, чем тысячелетия предшествующего развития науки. Сегодня над загадкой жизни бьются не ученые-одиночки, а целые научные коллективы, тысячи ученых. Первая подлинно научная теория происхождения жизни была создана в 1924 г. советским ученым А. И. Опариным. Значительный вклад в эту проблему внесли и другие советские ученые: Н. Холодный, А. Г. Пасынский, А. Н. Теренин, английские исследователи Дж. Холдейн, Дж. Бернал, американцы М. Кальвин, С. Фоке, С. Миллер, К. Поннамперума, К. Саган, Г. Юри, Дж. Оро, японский ученый Ш. Акабори и другие. Из крупиц истины, отдельных опытов, предположений, сопоставлений постепенно складывается стройная картина далекого прошлого нашей планеты, картина зарождения жизни.

    Начальный период возникновения жизни был, вероятно, и самым длительным. Миллиарды лет потребовались для возникновения первых, самых примитивных жизненных форм. Следующие этапы эволюции живого совершались уже быстрее. А биологическая история человека насчитывает «всего» два, максимум три миллиона лет.

    С чего же начался процесс образования живого? На этот вопрос можно дать точный ответ: с образования на поверхности нашей планеты органических веществ, соединений углерода. Именно этот элемент обладает уникальной способностью образовывать длинные цепочки из десятков, сотен и даже тысяч атомов — скелет органических молекул. Сложные органические соединения углерода с водородом, кислородом, азотом, фосфором и другими элементами — это строительный материал живых тел. Из таких молекул состоят и вещества жизни — нуклеиновые кислоты и белки.

    Биологической эволюции, процессу развития живых организмов на Земле, очевидно, предшествовала эволюция химическая — процесс абиотического (вне организма) образования все более сложных соединений углерода. Простейшие из них — углеводороды — обнаружены во всей доступной наблюдению Вселенной: и в раскаленной атмосфере звезд (в том числе и Солнца), и в холодных газопылевых облаках межзвездной среды, и на поверхности больших планет и их спутников, и в веществе космических странниц — комет, и в упавших на Землю метеоритах. Были они, очевидно, и на древней, еще безжизненной Земле.

    Чтобы понять, как совершался переход от углеводородов к более сложным соединениям углерода, нужно ясно представить себе условия на первобытной Земле, состав ее атмосферы.

    Древнейшая атмосфера Земли состояла в основном из водорода с примесью гелия — самых легких элементов, наиболее распространенных во Вселенной, в том материале, из которого формировалась древняя Земля. Однако притяжение Земли оказалось недостаточным, чтобы удержать эту легкую атмосферу. Спустя определенное время водород почти полностью улетучился в мировое пространство. На смену водородно-гелиевой пришла первичная атмосфера Земли, состоявшая из простейшего углеводорода метана, водяных паров, аммиака, а также, вероятно, сероводорода, некоторого количества углекислоты и окиси углерода. Все эти газы выделялись из горных пород по мере постепенного радиогенного разогрева Земли. В этой-то атмосфере и начали действовать силы, способствовавшие возникновению разнообразных и достаточно сложных соединений углерода.

    Какие это силы? Это ионизирующие излучения (космические лучи и излучение радиоактивных изотопов земной коры), ультрафиолетовое излучение Солнца, атмосферные электрические разряды (молнии), извержения вулканов, удары метеоритов. Из пяти перечисленных источников энергии именно ультрафиолетовые лучи Солнца — наиболее мощный, постоянно и глобально действующий фактор — сыграли самую выдающуюся роль.

    Чтобы узнать, какие вещества могли возникать в первичной атмосфере Земли под влиянием названных выше источников энергии, нужны точные эксперименты, в которых бы смесь газов подвергалась воздействию одной из этих сил. Такие опыты ставились во многих странах начиная с 1950 г. Первый опыт с облучением смеси С02, водяных паров, водорода (в присутствии ионов железа Fe++) а-частицами с энергией 40 Мэв был поставлен в 1950 г. М. Кальвином. Ученому удалось обнаружить образование муравьиной кислоты и формальдегида.

    В 1953 г. американский биохимик С. Миллер в смесь газов ввел аммиак, что сразу увеличило количество возникающих веществ. Кроме того, в установке было предусмотрено удаление из реагирующей смеси образующихся соединений. В этой смеси при электрическом разряде образуются циан, а также аминокислоты и альдегиды — достаточно сложные и важные органические соединения.

    Советские ученые А. Н. Теренин, Т. А. Павловская и А. Г. Пасынский в 1955—1960 гг. использовали действие ультрафиолетовых лучей и наблюдали образование в газовой смеси, имитирующей первичную атмосферу Земли, аминокислот глицина, аланина, ряда карбоновых кислот и т. п. Американский ученый С. Фоке получил сходные результаты, пропуская смесь газов через горячую трубку.

    Интересно, что набор возникающих органических соединений почти не зависит от источника энергии и определяется исключительно составом смеси газов и соотношением их элементов.

    После всех описанных выше опытов стало ясно, что в атмосфере древней Земли естественным абиогенным путем возникали такие сложные органические молекулы, как аминокислоты глицин, аланин, серии, валин, пролин — составные части белков; аденин и азотистые основания — компоненты нуклеиновых кислот; формальдегид и сахара — продукты его конденсации; простейшие жирные кислоты, а также цианиды, выступающие в роли катализаторов (ускорителей) синтеза органических соединений. Таким образом, можно считать доказанным образование на древней Земле основных видов органических молекул.

    Следующий этап химической эволюции — образование полимеров, гигантских молекул, столь характерных для всех форм жизни. Этот новый этап стал возможен после того, как на Земле накопились большие количества мономеров — простых органических соединений, перечисленных выше. В месте их образования, в атмосфере, концентрация этих веществ не могла быть большой: те же факторы, которые способствовали образованию органических соединений, обусловливали их разрушение. Очевидно, молекулы образовавшихся соединений вымывались из атмосферы дождями и попадали в водоемы, в первичный древний океан. Здесь они были защищены от разрушительного действия ультрафиолетовых лучей, электрических разрядов и т. п., здесь они могли беспрепятственно накапливаться. По мнению А. И. Опарина, это происходило в мелководных заливах океана, по мысли Дж. Бернала,— в заливаемых морскими приливами устьях рек — эстуариях. Под действием теплых лучей Солнца воды первобытного моря превратились в своеобразный «питательный бульон» жизни.

    Накоплению органических молекул, соединению их в длинные цепи могли способствовать их оседание и концентрация на частицах глины, кристаллах кварца, апатита, глины, особенно благоприятствовало присутствие цианидов и аммиака. Наибольшие шансы «выжить», сохраниться в этих условиях имели, конечно, вещества, склонные к аутокатализу, т. е. к химическому самовоспроизведению. Таковы, например, порфирины — активная часть столь важных органических веществ, как хлорофилл, гемоглобин, многие ферменты,— образующиеся, как показали опыты, абиогенно из веществ первичной атмосферы в присутствии ионов некоторых металлов.

    В морском мелководье, на отмелях и в эстуариях древнего океана в результате накопления и взаимодействия органических веществ возникали и распадались тысячи различных соединений. Реакции совершались причудливым образом, хаотически. Количество вариантов химической структуры увеличивалось, но пока не было преемственности, не было и дальнейшего прогресса. Не было и не могло еще быть жизни.

    Новый этап химической эволюции начался только после того, как сложные белковоподобные молекулы образовали первичные комплексы, выделились в виде капель (их называют коацерватными), отделились от раствора поверхностью раздела. Это был, по представлениям А. И. Опарина, зачаток организации, первый зародыш живого организма. Коацерваты могли избирательно поглощать «нужные» им вещества из воды, усложняя свою организацию. С появлением коацерватов становится возможным отбор более устойчивых и совершенных систем, в ходе которого постепенно складывались отдельные цепи обменных реакций, отбирались белковоподобные вещества, способные ускорять эти реакции — зачатки ферментов. ' Были ли коацерваты переходной формой от неживого к живому, или этот переход совершался несколько иначе — пока мы не знаем. В современных теориях возникновения жизни немало белых пятен. И самое большое из них — это вопрос о том, каким образом возник простейший механизм сохранения и наследования полезных свойств первичных организмов. Ведь без закрепления достигнутого немыслимо движение вперед.

    Молекулярная биология в содружестве с биохимией, биофизикой, физической химией, кибернетикой, фото- и радиобиологией добилась в последние 20—25 лет колоссальных успехов в разгадке самых сокровенных тайн жизни. Стало ясно, что жизнедеятельность клеток — от бактерий и синезеленых водорослей до клеток мозга человека — протекает по одним и тем же законам, на основе единых принципов организации.

    Любой сложный организм начинает свой индивидуальный жизненный путь с одноклеточной стадии, с оплодотворенной яйцеклетки — зиготы. В этой единственной клетке-прародительнице уже заложена, закодирована вся программа развития будущего организма, закреплена «навечно» и передается от клетки к клетке, из поколения в поколение наследственная память вида — совокупность наиболее ценных и важных черт организации, накопленных за тысячелетия развития.

    Хранителем и передатчиком наследственной информации является молекула дезоксирибонуклеиновой кислоты — ДНК. Наследственный «алфавит» насчитывает всего четыре «буквы» — четыре варианта азотистых оснований. Различные комбинации этих четырех исходных элементов определяют порядок чередования аминокислот в белках — основных структурных элементах клетки и главных «дирижерах» ее жизненных процессов. Молекула ДНК — единственная в своем роде органическая молекула, обладающая удивительным свойством самокопирования, самовоспроизведения. При клеточном делении каждая дочерняя клетка получает полный набор копий, отпечатков с материнской матрицы — ДНК. А в процессе жизнедеятельности клетки матрица ДНК, полученная по наследству, отдает зашифрованную в ней наследственную информацию, обеспечивает клетку набором вторичных штампов для производства всех необходимых белков.

    Этот матричный принцип организации наследственного механизма присущ всем живым существам на Земле. Способ зашифровки наследственной информации в молекулах ДНК — генетический код — также идентичен, един и для плесневого грибка, и для кузнечика, и для березы, и для человека. Таким образом, внутриклеточный наследственный механизм в главных чертах одинаков у всех земных организмов. Это великое открытие нашего времени особенно надежно утверждает мысль, что все живые существа на нашей планете — более или менее близкие родственники и что этот единый наследственный механизм сложился где-то на самой заре жизни. И лишь с этого момента стало возможно закрепление достигнутого, а значит, и дальнейший прогресс живого. Проблема зарождения земной жизни лишь тогда приблизится к своему разрешению, когда будет понят и объяснен в самых общих чертах процесс возникновения этого механизма. Современные теории эту проблему еще не могут решить.

    Предполагается, что одновременно с возникновением простейших белковоподобных соединений образовывались и полифосфаты — прообразы нуклеиновых кислот. Их образованию и усложнению способствовали кристаллическая структура частиц глины, апатитов, цианистые соединения. В процессе синтеза в числе источников энергии важная роль принадлежит ультрафиолетовому излучению Солнца.

    Простейшие формы жизни постепенно использовали запасы органических веществ, накопленные на Земле за миллионы лет добиологического развития, химической эволюции. Условием их дальнейшего развития стал процесс усвоения неорганических веществ, синтеза живого из неживого при помощи живого. Новый процесс получил название фотосинтеза, потому что в нем для синтеза органических соединений используется энергия солнечного света.

    Зеленый покров Земли

    Луч Солнца, долетев до Земли, перестает быть светом, но не исчезает и не расходуется впустую, не отражается полностью обратно в безжизненные пространства космоса. Поглощенный зелеными листьями растений, их хлорофилловыми зернами, солнечный луч превращается в великую силу, приводящую в движение машину жизни. В микроскопически малых органоидах клетки световой луч превращается в скрытую энергию химической связи между атомами. Он как бы сжимается в мощную пружину, которая затем, постепенно расправляясь, отдает запасенную энергию Солнца, экономно расходуя ее в ходе каждого жизненного процесса, будь то движение ресничек инфузории или трепет мысли гения, улыбка девушки или последнее усилие штангиста, блеск светлячка в ночи или балетное па Екатерины Максимовой. Чудо превращения энергии солнечного луча в движущую силу жизни совершается ежесекундно в тканях зеленого растения. И если луч Солнца мы по праву считаем первопричиной жизни (точнее, одним из важнейших компонентов причинного комплекса), то зеленый лист, зерно хлорофилла — это связующее звено между Солнцем и жизнью на Земле.

    Великий русский ученый К. А. Тимирязев первый понял и оценил значение зеленого пигмента растений — хлорофилла в развитии земной жизни, его роль посредника, космическую роль зеленого растения. Эту роль с равным успехом выполняют как микроскопические одноклеточные синезеленые водоросли — быть может, наиболее древние из существующих ныне живых существ, так и гиганты растительного царства — секвойи и эвкалипты, взметнувшие свои зеленые кроны на 100—120 м над поверхностью Земли.

    Зеленая масса растений Земли поглощает и усваивает всего около 0,3% энергии излучения Солнца, падающей на земную поверхность. Но и этого количества энергии достаточно, чтобы обеспечить синтез гигантской массы органического вещества биосферы, чтобы радикально изменить условия, существовавшие на безжизненной Земле.

    Одним из важнейших проявлений преобразующего влияния жизни (начавшегося на самой ее заре, с появлением хлорофилла) было изменение состава земной атмосферы. Древняя атмосфера Земли не содержала свободного кислорода.

    Первые простейшие формы жизни, использовавшие запасы органических веществ, накопленные абиогенным путем в «первичном бульоне», не меняли заметным образом состава атмосферы. С началом процесса фотосинтеза обстановка изменилась коренным образом. Поглощенная зелеными тканями растения энергия Солнца шла теперь па расщепление молекул воды на атомы водорода и кислорода. Молекулярный кислород выделялся в атмосферу. За миллиарды лет существования зеленых растений этот процесс привел к радикальному изменению состава атмосферы Земли и условий, существующих на ее поверхности. Накопление благодаря жизнедеятельности растений органической массы, с одной стороны, и свободного молекулярного кислорода, с другой — создало условия для возникновения совершенно новых живых существ, второй великой ветви жизни — мира животных.

    В организме животных (и человека в том числе) идут процессы окисления, по своей сути противоположные фотосинтезу. Углеводы, жиры и белки освобождают в теле животных скрытую энергию солнечного луча, когда-то пойманного и закованного в кандалы химических связей в «тюремных камерах» хлорофилловых зерен. Весь животный мир — постоянный потребитель огромных богатств, накапливаемых мириадами зеленых тружеников — растений.

    Все люди на Земле (а их сейчас около четырех миллиардов), принимая пищу, ежегодно переваривают, используют и окисляют около 700 млн. т органических пищевых веществ; рассеивают, отдают окружающей среде около трех квадриллионов (3·1015) ккал тепла. Это количество тепловой энергии превышает годовую продукцию 350 электростанций, подобных Волжской ГЭС им. В. И. Ленина. А ведь потребляют солнечные «консервы» — органическую пищу — не только люди, но и весь гигантский животный мир. Однако постоянный расход органических соединений непрерывно возмещается в великом круговороте веществ и энергии благодаря процессу фотосинтеза, постоянной подзарядке жизненных батарей бесплатной энергией солнечного света.

    В наше время зеленый покров Земли связывает и использует всего 0,3% падающего солнечного света. Однако в хороших условиях растения способны усваивать 5—10% энергии лучей Солнца, а в принципе возможно повышение «коэффициента полезного действия» растений и до 25—30%. Резервы и возможности земной жизни, следовательно, далеко еще не исчерпаны.

    Пройдут годы. Человек будущего — гражданин коммунистического общества, высший продукт эволюции земной жизни и подлинный, рачительный хозяин земных богатств — найдет пути разумного использования океанских просторов и обширных пустынь, горных массивов и закованных во льды пространств Арктики и Антарктики для улавливания и использования энергии Солнца.

    А когда станут реальностью далекие межпланетные и межзвездные экспедиции, он и на борту космического корабля создаст крохотный замкнутый мирок, в котором так же, как в большом земном мире, будет осуществляться круговорот веществ и энергии. Важнейшим и непременным звеном этой искусственной экологической системы, малой биосферы будут зеленые оранжереи. Зеленое растение войдет в просторы космоса как необходимый спутник человека, поставщик пищи и кислорода, заботливый санитар. Так, по мере развития и расцвета земной жизни изменяется, возрастает космическая роль растения, гениально понятая К. А. Тимирязевым.

    Каков же этот великий и таинственный процесс, в ходе которого стремительный и неуловимый солнечный луч превращается в узника, и, гремя оковами — цепями углеродных атомов, приводит в движение гигантский маховик биосферы?

    В самом общем виде фотосинтез, т. е. синтез при участии света, состоит в образовании из углекислоты воздуха и почвенной влаги сложных органических соединений углерода, кислорода и водорода. Благодаря использованию минеральных солей почвы в их состав включается также азот, фосфор, сера, железо, калий, натрий и другие элементы. В итоге возникают огромные молекулы белков, нуклеиновых кислот, углеводов, жиров, служащие, в свою очередь, строительным материалом клеток, кирпичиками здания жизни.

    Со времен К. А. Тимирязева (70—80-е годы прошлого столетия) и почти до середины XX в. ученые были убеждены, что солнечная энергия, уловленная хлорофиллом, расходуется на расщепление молекул углекислоты: кислород выделяется в атмосферу, а углерод идет на синтез органических веществ. Суммарная формула процесса изображалась таким образом:

    6С02 + 6Н20 -> С6Н1206 + 602.

    Формулу С6Н1208 имеют такие продукты фотосинтеза, как глюкоза, фруктоза и другие простейшие сахара. В них водород и кислород содержатся в том же соотношении 2 : 1, как в воде, поэтому эти вещества называют еще углеводами. Простейшие углеводы — моносахариды, теряя воду, могут образовывать более сложные соединения — дисахариды — сахарозу (тростниковый сахар), лактозу (молочный сахар), полисахариды — крахмал, целлюлозу и т. п. Применение метода меченых атомов внесло в эту схему существенную поправку. Оказалось, что сила, заключенная в солнечном луче, расходуется на разложение воды, а не двуокиси углерода, и что кислород атмосферы имеет, следовательно, не углекислотное, а водное происхождение. В уточненном виде основное уравнение фотосинтеза имеет следующий вид:

    С02 + 2Н20 + свет -> 02 + Н20 + (СН20) + 112 ккал.

    Иными словами, в органических соединениях, синтезированных из одной грамм-молекулы углекислоты, запасается 112 ккал энергии.

    Фотосинтез — сложный, многоступенчатый процесс, детали которого не полностью расшифрованы поныне. Состоит он из большого количества последовательных этапов, реакций. Реакции эти можно подразделить на два типа: одни осуществляются под непосредственным влиянием поглощенного света, другие — в темноте. Непременным участником световых, фотохимических реакций являются вещества, избирательно поглощающие излучение определенной длины волны. Если фотохимическая реакция активируется видимым светом, для ее осуществления нужно красящее вещество, пигмент. В реакциях фотосинтеза эту роль выполняет хлорофилл. Важная способность фотохимических реакций: их скорость практически не зависит от температуры среды, в которой они протекают. И это естественно: поглотив порцию солнечных лучей, хлорофилл не нуждается больше в притоке энергии, чтобы начать процесс фотосинтеза.

    Реакции фотосинтеза, протекающие в темноте, называют темповыми, химическими (без приставки «фото»). Эти реакции регулируются и управляются белковыми катализаторами — ферментами. Каждая последующая реакция фотосинтеза для своего осуществления нуждается в присутствии специального фермента. Скорость темновых, как и всех вообще химических реакций, зависит от температуры и при ее повышении на 10° С возрастает в два-три раза.

    Процесс фотосинтеза начинается с поглощения света хлорофиллом. Это замечательное вещество, к свойствам которого мы будем еще неоднократно возвращаться. По своему составу хлорофилл очень близок к тему — красящему веществу гемоглобина крови и переносчику кислорода. Структурной основой обоих служат порфирины — вещества, которые, как говорилось в предыдущем разделе, могут при определенных условиях образовываться абиогенно. Следовательно, фотосинтез на древней Земле мог явиться закономерным итогом естественного хода событий и, в свою очередь, открыл новую главу в эволюции земной жизни.

    Активный центр хлорофилла (и тема) состоит из порфириновых группировок. Но если у гемоглобина в центре активной группы расположен атом железа, то в хлорофилле эту роль выполняет атом магния. Молекула хлорофилла в целом выполняет две функции: поглощает порцию солнечной энергии и затем передает ее строго по назначению. Функцию улавливания энергии света выполняют порфириновые кольца, тогда как атом магния выступает в качестве посредника и катализатора в фотохимической реакции разложения воды на атомы водорода и кислорода. Кислород уходит в атмосферу, а атомы водорода, снабженные при освобождении запасом энергии, постепенно расходуют ее, проходя лестницу темповых реакций.

    В растениях имеется несколько видов хлорофилла, из которых главные два — хлорофилл а и хлорофилл б. Поглощают хлорофиллы не все видимые глазом лучи Солнца, а главным образом красные и синие лучи. Максимумы поглощения света для хлорофилла а лежат в области 400—440 и 630—600 нм (1 нм = 10-9 м), для хлорофилла б — в области 440—470 и 620—650 нм. Хлорофилл плохо поглощает зеленые лучи, но зато он хорошо их отражает и рассеивает, поэтому те части растений, которые содержат хлорофилл, имеют зеленую окраску. В зеленых частях растения содержатся и желтые пигменты — каротиноиды, которые хорошо поглощают синие лучи. Есть основания полагать, что каротиноиды передают поглощенную энергию хлорофиллу либо наряду с ним участвуют в фотохимических реакциях процесса фотосинтеза (рис. 2).

    Все химические реакции, совершающиеся самопроизвольно, идут с потерей энергии. Чем больше величина отданной энергии, тем прочнее, устойчивее образовавшееся вещество. В процессе фотосинтеза совершается последовательный ряд реакций, общее направление которых противоположно естественному сродству атомов. При помощи энергии солнечного света растение преодолевает силы связи между водородом и кислородом в молекулах воды, между кислородом и углеродом в углекислоте. Образующиеся при этом активные продукты (атомы кислорода, водорода, гидроксильные ионы и др.) стремятся, отдав избыточную энергию, вновь соединиться. Если бы реакции фотосинтеза происходили в растворе или в другой простой среде, обратные реакции сводили бы на нет результаты основного процесса. В зеленом растении этого не происходит, так как образующиеся активные продукты с момента своего возникновения пространственно разделены. Каждый из них проходит свою цепочку превращений.

    Рис. 2. Спектры поглощения каротиноидов (1) и хлорофиллов (2)

    Водород и углерод как бы движутся навстречу друг другу по ступенькам темновых реакций.

    Для пространственного разделения основных активных продуктов и путей их обмена зеленое растение в ходе эволюции выработало сложный аппарат — систему мембран, своего рода органы фотосинтеза. Пигменты, участвующие в фотосинтезе, сосредоточены внутри клеток в хлоропластах, имеющих правильную пластинчатую структуру. Под микроскопом хорошо видно, что и в пластинках есть правильно чередующиеся структурные элементы — диски. Диски состоят из чередующихся слоев белковых и жироподобных (липоидных) веществ (рис. 3). Молекулы хлорофилла, связанные с веществами белково-липоидного комплекса, образуют с ними единую мембранную структуру.

    На первой, фотохимической, стадии процесса происходит захват, поглощение энергии света (рис. 4).


    Рис. 3. Схема строения граны хлоропласта. Между монослоями белка (1) лежат отдельные молекулы хлорофилла (2) и слои фосфолипидов (3)

    Каждая молекула хлорофилла а поглощает по одному кванту света. Поглощенная энергия кванта передается одному из электронов, который благодаря избытку энергии отдаляется от молекулы. Чем больше запас энергии возбужденного электрона, тем на большее расстояние он отдаляется. Но в обычных условиях состояние возбуждения кратковременно. Через десяти- или стомиллионную долю секунды возбужденный электрон возвращается на свое место, отдав избыточную энергию в виде кванта излучения.

    В условиях сложной структуры фотосинтетического аппарата растений возбужденный электрон не возвращается на место, а захватывается вместе с избытком энергии особым железосодержащим белком — ферредоксином. Затем электрон передается на пиридиннуклеотиды — вещества, играющие в клетке роль переносчиков водорода. Вслед за электроном пиридиннуклеотиды принимают положительно заряженный ион водорода, образующийся в результате расщепления молекул воды. Второй осколок молекулы воды — отрицательно заряженный ион гидроксила — участвует в реакциях, регулируемых хлорофиллом б. Ион водорода и электрон образуют атом водорода.

    Пиридиннуклеотиды используют в дальнейшем водород для частичного восстановления углерода в молекуле углекислоты.

    Другие электроны молекул хлорофилла а, возбужденные квантами солнечного света, проходят иную цепочку превращений, и в конце концов их избыточная энергия расходуется на образование богатых энергией молекул аденозинтрифосфорной кислоты — АТФ. В результате поглощенная хлорофиллом энергия солнечного света превращается в энергию химических соединений, в форму привычных для организма, «удобоваримых» переносчиков энергии и электронов, таких, как АТФ и пиридиннуклеотиды.

    Дальнейшие их превращения идут уже по обычным биохимическим законам. В результате потери электронов в активных слоях хлоропластов, содержащих молекулы хлорофилла я, образуются электронные вакансии — дырки, которые стремятся поглотить электрон из любого источника. В процессе фотосинтеза таким источником является вода. При ее расщеплении наряду с положительными ионами водорода образуются отрицательно заряженные, несущие избыточный электрон ионы гидроксила. Молекула хлорофилла б после поглощения кванта света передает возбужденный электрон через особую цепочку реакций молекуле хлорофилла а, а свою структуру восстанавливает за счет электрона гидроксильного иона. Гидроксилы, потеряв избыточный электрон, взаимодействуют между собой, образуя перекись водорода, которая разлагается на воду и свободный кислород, уходящий в атмосферу.

    Итак, при участии двух форм хлорофилла и двух фотохимических реакций в хлоропластах растений от воды к пиридиннуклеотидам и АТФ проходит «сквозной поток» электронов, приводимый в движение энергией света. Навстречу ему идет поток превращений углекислоты, поглощенной растением из воздуха, который целиком складывается из темновых реакций. Согласно представлениям американского ученого, лауреата Нобелевской премии М. Кальвина, молекула углекислоты присоединяется в процессе фотосинтеза к рибулезодифосфату (РДФ) — веществу, содержащему пять атомов углерода. Образующееся шестиуглеродное соединение распадается на две молекулы фосфоглицериновой кислоты, содержащие по три атома углерода. Так, с самого начала превращений углекислота оказывается включенной в состав углеродной цепи в виде карбоксильной группы СООН.

    Чтобы осуществить дальнейший синтез углеводов, белков и липоидов, необходимо частично восстановить углерод, т. е. вытеснить из карбоксильной группы атом кислорода, заместить его водородом. В этой реакции поставщиками водорода являются пиридиннуклеотиды, а снабжение энергией происходит за счет молекул АТФ. И те и другие образуются в результате фотохимических реакций расщепления воды. Так сливаются два шедших навстречу друг другу потока: превращений углекислоты, поглощаемой растениями из воздуха, и превращений воды, расщепляемой при участии солнечного света. В результате частично восстанавливается углерод, и по ходу различных цепочек превращений под влиянием специальных сложных рядов ферментов осуществляется синтез белков, углеводов и других сложных органических веществ. Суммарный результат процесса можно изобразить в таком виде:

    (звездочкой обозначена молекула Н20, находящаяся в состоянии возбуждения за счет энергии солнечного света, переданной хлорофиллом).

    Чтобы завершить полный цикл фотосинтеза, на каждую молекулу углекислоты, усвоенную и включенную в сложные структуры, необходимо не менее четырех молекул восстановленных пиридиннуклеотидов и три-четыре молекулы АТФ. Поскольку для образования каждой такой молекулы нужен по крайней мере один квант энергии Солнца, на единичный цикл фотосинтеза расходуется минимум восемь квантов.

    В книге «Путешествия Гулливера» Джонатан Свифт дал ядовитую сатиру на английскую Академию наук (Королевское общество), изобразив ее как сборище чудаков и умалишенных, занятых решением нелепых задач. Один из этих «чудаков» восемь лет созерцал зеленый огурец, запаянный в стеклянной банке, надеясь разрешить задачу улавливания солнечных лучей и их использования. Однако то, что 200 лет назад казалось верхом бессмыслицы, примером бесполезной траты времени, в наше время стало одной из самых крупных и увлекательных проблем биологии.

    Пройдет, вероятно, немного лет, и процесс фотосинтеза перестанет быть загадкой. Лежащие в его основе механизмы будут изучены, смоделированы и поставлены на службу человечеству. Наука вплотную приблизится к познанию одного из важнейших этапов возникновения и эволюции жизни на Земле.

    За миллиарды лет существования Земли облик ее менялся непрерывно. Даже с того времени, как сформировались воздушная оболочка Земли — атмосфера, земная кора — литосфера, покрытая частично морями и океанами — гидросферой, Земля изменилась неузнаваемо. Этому способствовали с самого начала естественные процессы, развертывающиеся как в недрах Земли, так и на ее поверхности.

    Движение материков и колебания уровня Мирового океана, процессы горообразования и опускания морского дна и участков суши, извержения вулканов и землетрясения, периодические наступления и отступления ледников, разрушение горных пород под влиянием ветров, колебаний температуры и работы воды — все эти постоянно и глобально действующие силы миллиарды лет преобразовывали облик нашей планеты.

    По мере того как человек познает облик Земли и проникает в глубины ее истории, становится все более ясной непосредственная связь всех процессов, протекающих в земной коре, ее недрах и на поверхности, с деятельностью Солнца, с таинственной периодикой его активности. Более подробно говорится об этом в следующих разделах этой главы.

    Возникшая на Земле жизнь, «питаясь» энергией солнечного света, по мере своего развития во все возрастающих масштабах изменяла, преобразовывала облик нашей планеты. Мириады живых существ в своей постоянной незаметной деятельности выступали как своего рода посредники между Солнцем и Землей, способствуя изменению лика последней.

    Активная фотосинтетическая деятельность зеленых растений радикально изменила состав земной атмосферы. Углекислый газ, миллионы лет выделявшийся в атмосферу при извержениях вулканов и из трещин земной коры, почти полностью был усвоен растениями, «связан» и использован для построения углеродных скелетов органических молекул. В настоящее время в атмосфере Земли его содержание не превышает 0,03%. Зато освобождающийся в процессе фотосинтеза молекулярный кислород стал одним из основных компонентов атмосферы — 20,9%, что послужило толчком для выхода жизни из океана па сушу, для эволюции органического мира. «В смысле создания свободной энергии, действенной энергии планеты основным является перевод лучистой энергии Солнца через живое вещество в свободный кислород, охватывающий всю поверхность планеты, дающий ей совсем особые, нигде вне ее не наблюдаемые свойства» [В. PL Вернадский. Очерки геохимии. Избранные сочинения, т. I. 1954, с. 180.].

    Изменение состава атмосферы оказало громадное влияние на химический состав горных пород, на ход и направленность химических процессов в атмосфере, литосфере и гидросфере. Древняя атмосфера Земли была восстановительной благодаря присутствию в ней водорода, аммиака, метана и других простейших углеводородов. Выделение свободного кислорода наряду с потреблением растениями углекислоты, аммиака и углеводородов сделало атмосферу окислительной. Взаимодействие кислорода с веществами литосферы и гидросферы привело к образованию окислов, кислот, солей, к изменению строения минералов и горных пород. В химических процессах стали доминировать окислительные реакции. Резкое изменение состава горных пород, как установлено геологами, произошло примерно 1,8—1,3 млрд. лет назад. Никакой другой причины, помимо деятельности живых существ, для столь радикального изменения облика Земли не существует.

    Завоевание суши, постепенное эволюционное приспособление живых существ к экстремальным условиям, существующим на нашей планете: к гигантским давлениям в океанических безднах, к леденящему холоду Арктики и Антарктики, к вечному безмолвию горных вершин и разреженному воздуху высот — привело к формированию на Земле новой оболочки — биосферы, той области планеты, где существует живое вещество и проявляется его влияние. На суше это так называемая кора выветривания, толща осадочных пород, достигающая местами нескольких километров в глубину. Это вся толща водных бассейнов Земли. Наконец, это тропосфера — приземной и приводный слой воздуха толщиной 12—18 км, в котором происходит непрерывное перемешивание воздушных масс.

    Однако влияние жизни, биологических процессов можно уловить и в стратосфере, и в глубоких слоях Земли, пока недоступных для непосредственного проникновения живых существ. Так, возникновение на высоте около 30 км слоя озона было результатом накопления в атмосфере свободного кислорода за счет фотосинтеза. С другой стороны, некоторые горные породы (в том числе, видимо, и граниты) могут возникать в глубинах Земли при воздействии высоких температур и давлений на осадочные породы, содержащие остатки живых существ.

    Размножение и гибель организмов на протяжении миллиардов лет обогащают постоянно формирующиеся на Земле осадочные породы, включающие продукты выветривания (частицы глины, песка, лёсса и т. п.), с остатками живых существ (скелетами, раковинами, особыми химическими соединениями). Погребенные в недрах Земли осадочные породы со временем превращаются в месторождения нефти, угля, торфа, горючих сланцев. Жизнедеятельность микроорганизмов, растений, а затем и животных (в меньшей степени) породила на поверхности суши особое образование — почву, в которой вещество литосферы подверглось сложным превращениям и вовлечено в постоянный круговорот жизни. Размножение морских колониальных организмов привело к появлению целых новых островов, атоллов, рифов и скал. Большой барьерный риф у северо-восточного побережья Австралии тянется на протяжении 2300 км и оказывает существенное влияние на направление морских течений, ветров — на весь комплекс природных условий на значительном участке земной поверхности.

    Биосфера — это сложное соединение географических сред и планетарного живого вещества. В каждой географической зоне, каждом районе Земли одновременно с комплексом природных условий складывается и определенная сложная система организмов, постоянно и неразрывно связанных с неорганическими компонентами среды. В биосфере движение и взаимодействие вещества происходит не только в силу химических законов, но и под влиянием жизнедеятельности организмов. «Несомненно, что энергия, придающая биосфере ее обычный облик... исходит от Солнца в форме лучистой энергии. Но именно живые организмы, совокупность жизни, превращают эту космическую энергию в земную, химическую и создают бесконечное разнообразие нашего мира. Это живые организмы, которые своим дыханием, своим питанием, своим метаболизмом, своей смертью и своим разложением, постоянным использованием своего вещества, а главное — длящейся сотни миллионов лет непрерывной сменой поколений, своим рождением и размножением порождают одно из грандиознейших планетных явлений, не существующих нигде, кроме биосферы. Этот великий планетарный процесс есть миграция химических элементов в биосфере, движение земных атомов, длящееся больше двух миллиардов лет согласно определенным законам» [В. И. Вернадский. Геохимическая энергия жизни в биосфере. Избранные сочинения, т. V, I960, с. 228.].

    Человек — высший продукт эволюции биосферы. По мере роста могущества человеческого разума увеличивается численность особей вида Homo sapiens и в еще большей степени возрастают масштабы вмешательства человека в природу, его преобразующей деятельности. Человек вырубает и выжигает леса, на огромных пространствах наиболее плодородных земель искусственно насаждает и культивирует нужные ему растения, оберегая их от конкуренции со стороны более приспособленных диких растений — сорняков. Все большую часть суши человек занимает своими поселениями, строит шахты и открытые карьеры, электростанции, дороги и плотины, меняет русло рек, использует их воду для орошения и создания водохранилищ. Добывая из-под земли растущие количества нефти, угля, природного газа и сжигая их, он возвращает в биологический круговорот громадные количества углерода, погребенные в прошлые геологические эпохи, и в то же время в возрастающих масштабах загрязняет атмосферу, гидросферу и литосферу. Человек создает вокруг себя и для себя вторую, искусственную среду: заводы и фабрики, города, строит корабли, подводные лодки, воздушные лайнеры и космические корабли.

    Пространство Земли, где так или иначе проявляется преобразующая деятельность человека, академик В И. Вернадский назвал ноосферой (от греческого слова «разум»). Но и в ноосфере человек использует в той или иной форме энергию Солнца. Все основные источники энергии, эксплуатируемые человеком (за исключением глубинного тепла Земли, которое еще почти не используется, и энергии атомного ядра, тайной которого люди овладели совсем недавно), имеют своим первоисточником энергию солнечного излучения.

    Следовательно, и земная жизнь в целом, и человек как ее высшее творение используют и преобразуют солнечную энергию в процессе преобразования облика Земли, выступая в этом процессе как посредники между Солнцем и Землей.

    Мы видим мир

    Одно из основных свойств живых существ — способность реагировать на внешние воздействия, раздражимость. Без этого живой организм не может существовать. Не воспринимая внешние влияния, нельзя отличить врага от друга и своевременно принять меры для защиты. Живые организмы, более чувствительные к воздействию окружающей среды, имеют больше шансов выжить в ежедневной борьбе за существование. «Над каждым живым существом постоянно висит вопрос: „быть или не быть”, и сохраняет он свое право на жизнь только под условием — в каждое мгновение своего существования быть совершеннее своих соперников»,— писал К. А. Тимирязев. Свойство раздражимости благодаря механизму естественного отбора закреплялось и прогрессировало в длинном ряду поколений.

    Одним из самых древних, постоянных и привычных раздражителей, действующих на живые существа, являются солнечные лучи. Воспринимая влияние лучей Солнца, большинство земных организмов стремится навстречу им. Например, одноклеточные водоросли или амёбы под микроскопом собираются на освещенной половине поля зрения. Пресноводные гидры и некоторые водяные растения всегда располагаются у стенки аквариума, обращенной к окну. Зеленые растения тянутся вверх, к Солнцу. Известны и другие движения, совершаемые живыми организмами под влиянием влажности почвы, различных химических веществ, силы земного притяжения, колебаний температуры среды и др. Такие движения организмов, совершаемые под воздействием внешнего раздражения, получили название тропизмов. Пример положительного гелиотропизма (гелиос — по-гречески Солнце) — свойство подсолнуха поворачивать свою головку вслед за Солнцем. Отрицательный гелиотропизм (фототропизм) проявляется у ночных бабочек, которые прячутся от дневного света. Комар анофелес — переносчик малярии — отрицательно реагирует на сильный свет, но положительно — на слабый.

    Вернемся к явлению положительного гелиотропизма. Еще в 1693 г. английский ученый Дж. Рей предположил, что причиной выгибания стебля растения является неравномерное поступление к нему солнечных лучей. С освещенной стороны рост стебля замедляется, поэтому преобладание роста на затененной стороне приводит к повороту стебля в направлении Солнца. В 1832 г. швейцарский ботаник О. П. Декандоль сумел доказать, что в этом случае решающее значение имеет именно солнечный свет, а не тепло.

    По мере эволюции животных организмов чувствительность их органов чувств становилась совершеннее. Способность организма реагировать на химические вещества (хемотропизм) помогла развитию органа обоняния — специализированных групп клеток, расположенных на пути вдыхаемого воздуха и улавливающих присутствие химических примесей — запахи. Из восприятия механических прикосновений возникла способность ощущать движения частиц воздуха — звук, сопровождающий движение дичи или приближение врага. Но с помощью этих органов чувств даже при самой высокой степени их совершенства нельзя точно определить направление, откуда доносятся звуки или запахи, расстояние до их источника. И уже совсем невозможно воспринять на расстоянии форму, величину предметов, их количество и порядок расположения. А между тем именно такая информация очень нужна организму.

    Осязание, вкус и восприятие температуры должны были возникнуть раньше зрения — ведь они прямо передают информацию, важную для организма: предмет горячий или твердый, съедобный или нет. Зрительные образы нуждаются в истолковании, поэтому развитие органа зрения ж функции зрения шло параллельно развитию мозга.

    Решающий шаг вперед был сделан тогда, когда лучи Солнца стали восприниматься не как самостоятельные раздражители, а как рассеянные лучи, отраженные от окружающих предметов и несущие информацию о них. Зрение развилось, вероятно, из восприятия колебаний освещенности, из реакции на движущиеся по поверхности кожи тени — сигнал возможной и близкой опасности. Из простых чувствительных клеточек, лежащих на поверхности тела, путем длительной эволюции развился важнейший, наиболее связанный с мыслительной деятельностью орган чувств — глаз. «Глаз обязан бытием своим свету», говорил И. В. Гете — великий писатель и поэт, выдающийся естествоиспытатель.

    По определению академика С. И. Вавилова, «глаз есть результат чрезвычайно длительного процесса «естественного отбора», итог изменений организма под действием внешней среды и борьбы за существование, за лучшую приспособленность к внешнему миру» [С. И. Вавилов. Глаз и Солнце. М., Изд-во АН СССР, 1956, с. 82.]. «Глаз в отношении энергии приспособлен не к самому Солнцу, а к солнечному свету, рассеянному от окружающих тел» [Там же, с. 108.].

    Реакцию гелио- или фототропизма мы можем рассматривать как примитивную, зачаточную форму зрения, а глаз человека — как конечный этап эволюции важнейшей функции живого.

    «Глаз» одноклеточного организма устроен весьма примитивно: обычно это простое глазное пятно — скопление красного или черного пигмента, окружающего чувствительный участок протоплазмы. Роль хрусталика порой играет просто-напросто зернышко крахмала. Конечно, такой простой и ничтожный по размерам аппарат не может дать отчетливого изображения. Светочувствительные органы дождевого червя, разбросанные по его поверхности, не приспособлены к восприятию изображений, а дают лишь ощущение света. При помощи зрительного углубления червь приблизительно определяет направление светящегося тела. Пигментные клетки нередко образуют углубление — «бокал», ограждающий зрительную клетку от попадания боковых лучей. Пользуясь таким зрительным аппаратом, приходится довольствоваться созерцанием лишь тех предметов, которые находятся прямо «перед носом». Перемещение воспринимается, если двигающийся объект переходит из одного поля зрения в другое, последовательно раздражая зрительные клетки соседних глазков.

    Зрительный орган моллюска представляет собой более совершенную конструкцию — полость с маленьким отверстием и внутренним светочувствительным слоем, от которого отходит нерв. В глазу скорпиона перед светочувствительным слоем имеется прозрачный шар. У головоногих и позвоночных наблюдается постепенный переход к человеческому глазу.

    Глаза большинства рыб, выпуклые и снабженные круглым, а не уплощенным хрусталиком, воспринимают свет подобно широкоугольному объективу. Рыбы одинаково хорошо видят происходящее не только впереди, но и с боков и даже сзади. Некоторые глубоководные рыбы сами излучают свет с помощью специальных люминесцирующих органов, расположенных вблизи глаза. Такой «прожектор» очень полезен при отыскании пищи. А при опасности рыбы могут прятать его, закрывая специальными складками кожи.

    Глаз человека имеет форму почти правильного шара диаметром 24 мм. Снаружи глаз покрыт толстой белой оболочкой — склерой. Ее передняя прозрачная выпуклая часть носит название роговой оболочки, или роговицы. Позади роговицы расположена прозрачная чечевицеобразная линза — хрусталик. Между роговицей и хрусталиком, в передней камере глаза расположена непрозрачная для света радужная оболочка. Присутствие в ней пигмента придает окраску глазу. Пигмент один — меланин, а цвет глаз бывает различный — от бледно-голубого до черного. Цвет зависит как от количества пигмента, так и от места и характера его расположения. У голубоглазых людей (а также у коз, сиамских кошек) зерна темного пигмента расположены на задней стороне радужной оболочки и при отражении создают впечатление голубизны. Зерна меланина, рассеянные на передней стороне оболочки, делают глаза серыми, а по мере возрастания количества пигмента цвет глаз становится карим, а потом и черным.

    Окраска радужной оболочки — наследственный признак, передача его потомкам подчиняется особым закономерностям. В центре оболочки имеется круглое отверстие — зрачок. Радужная оболочка играет роль диафрагмы: она может сокращаться и расслабляться, изменяя величину просвета зрачка, т. е. диаметр попадающего внутрь глаза светового пучка. Внутренняя поверхность склеры выстлана сосудистой оболочкой, обеспечивающей питание всех частей глаза. Внутренний слой, выстилающий глаз изнутри, носит название сетчатой оболочки, сетчатки, или ретины. Он-то и воспринимает лучи света, проникающие внутрь глаза. Задняя камера глаза заполнена прозрачным стекловидным телом (рис. 5).

    Рис. 5. Глаз человека в разрезе 1 — ресничная мышца; 2 — радужная оболочка; 3 — водянистая влага передней камеры глаза; 4 — зрачок; 5 — роговица; 6 — связка, поддерживающая хрусталик; 7 — конъюнктива; 8 — хрусталик;9 — стекловидное тело; 10 — склера; 11 — сосудистая оболочка; 12 — сетчатая оболочка; 13 — центральная ямка; 14 — слепое пятно; 15 — зрительный нерв

    Таким образом, световой луч, попавший в глаз, проходит три прозрачные среды: роговицу, хрусталик и стекловидное тело. Все они преломляют свет, концентрируют его таким образом, что на светочувствительном слое получается четкое, а не расплывчатое изображение предмета, отражающего свет. Но ведь предметы могут находиться на различном расстоянии от глаза. Для ясного их видения необходим механизм изменения преломляющей силы глаза. Эту работу выполняет хрусталик. Посредством мускулов, расположенных вокруг хрусталика, может быть изменена его выпуклость, кривизна. Механизм, с помощью которого преломляющая сила хрусталика автоматически изменяется, обеспечивая четкое видение предметов, носит название аккомодации. Недостатки аккомодации (близорукость и дальнозоркость) можно исправить с помощью очков — стеклянных линз, дополнительно рассеивающих или концентрирующих лучи света.

    Глаз полностью воспринимает только небольшой по размерам или далеко расположенный предмет, так как диаметр зрачка невелик, а на ярком свету он уменьшается еще больше. Обычно же глаз очень легко поворачивается в своей орбите, быстро обегая все точки рассматриваемого предмета, как бы «обшаривая» его. Поэтому возникающая на сетчатке картина дает представление о форме предмета, даже если он неподвижен. А вот лягушки и некоторые их собратья из класса амфибий (земноводных) не видят неподвижные предметы. Лягушка скорее погибнет от голода, но не обратит внимания на лежащую рядом пищу, если она неподвижна. А ведь глаз амфибий — это не примитивный «бокал», а довольно совершенный орган. В чем же дело?

    Оказывается, мы видим неподвижные предметы только благодаря постоянным, незаметным движениям глазных яблок. Если диапозитив с картинкой прикрепить непосредственно к глазному яблоку (с помощью присоски), то он будет смещаться вместе с глазом, а на сетчатку спроецируется неподвижное изображение. Человек перестанет видеть картинку! Глаз человека, рассматривающего предмет, за считанные секунды совершает миллионы внешне беспорядочных координированных движений. И в результате зрительные ощущения от отдельных участков предмета сливаются в мозгу в цельный образ.

    Интересно, что в невесомости движения глазных яблок благодаря отсутствию силы тяжести совершаются гораздо легче, и острота зрения заметно возрастает. Это отмечали американские космонавты. Гордон Купер с высоты нескольких сот километров ясно видел трубы на домах в Тибете и грузовик на дороге в Мексике. Эдвард Уайт во время полета на корабле «Джемини» различал дороги, моторные лодки и даже волны, оставляемые ими. По его словам, Земля с орбиты «Джемини» видна была лучше, чем из кабины самолета, летевшего на высоте 13 км.

    Слежение за движущимся предметом — автоматическое, бессознательное свойство глаза, его нельзя удержать усилием воли. Это хорошо знают криминалисты, используя движение глазного яблока (оптокинетическую реакцию) для разоблачения мнимых слепых.

    Глаз насекомого в большинстве случаев так же неподвижен, как и глаз лягушки. Однако ощущение движения в нем создается благодаря так называемому фасеточному устройству. Глаз человека представляет собой одну линзу и одну сетчатку. У насекомого глаз состоит из десятка тысяч крохотных линзочек. Под каждой — 6—8 зрительных клеток, расположенных звездочкой. Каждый из глазков воспринимает движущийся предмет отдельно, последовательно и в совокупности создается ощущение движения. Более того, фасеточное устройство повышает способность глаза различать световые мелькания. Если для глаза, человека 20—24 мелькания в секунду уже сливаются в цельную картину (на этом основан принцип кинематографа, где за секунду сменяется 24 кадра), то глаз мухи различает до 300—350 раздельных, не сливающихся кадров в одну секунду!

    Для организма важно уметь определять не только форму предмета, но и расстояние до него, его размеры. Получать не плоскостное, а трехмерное представление об окружающих нас предметах мы можем благодаря наличию двух глаз (бинокулярному зрению). Чем ближе к нам находится предмет, тем ближе должны быть сведены оси обоях глаз. Величина угла, образуемого осями глаз, степень конвергенции, точно характеризует расстояние до предмета.

    Но так обстоит дело со зрением далеко не во всем мире животных. Только у человека и обезьяны оси обоих глаз при отсутствии конвергенции параллельны. У льва глазные оси образуют угол в 10°, у кошки 14—18°, у собаки — 30—50°, у оленя — более 100°, у жирафы — 140°, у зайца — даже 170°. Чем больше величина этого угла, тем труднее осуществить сведение осей глаз для одновременного рассмотрения предмета двумя глазами. Если глаза направлены в разные стороны так, что их поля зрения не соприкасаются, то, очевидно, трехмерное, стереоскопическое зрение невозможно. Поэтому зайцы лишены способности определять с помощью зрения расстояние до предметов, их глубину. И для собак мир в большой мере видится плоскостным, объем предметов и расстояние до них воспринимаются с трудом. В полной мере способностью к бинокулярному, трехмерному зрению обладают наряду с приматами все кошачьи, а также многие птицы — грифы, орлы, соколы и др.

    Очень важное значение имеет также определение размера предмета, его величины. Один и тот же предмет по мере удаления кажется нам все меньше и меньше. Это явление особенно легко наблюдать, глядя на уходящие вдаль телеграфные столбы. Очевидно, при оценке величины предмета мы должны невольно сообразовываться с расстоянием до него. Имеет значение также наш прошлый опыт, наблюдение этого предмета вблизи. Работа по сравнению, анализу зрительных впечатлений, сопоставление с опытом прошлого осуществляется в нашем мозгу подсознательно.

    Мозговые центры зрения постепенно вносят свои поправки в детали зрительных восприятий. Изображения предметов, возникающие на сетчатке наших глаз, обратны действительным, перевернуты. Ведь хрусталик, как самая настоящая линза, фокусирует и делает обратными изображения на сетчатке. Мы воспринимаем их в нормальном положении благодаря тому, что с первых месяцев жизни наш мозг, сопоставляя данные о предметах, полученные с помощью зрения и осязания, приводит зрительные образы в соответствие с их прототипами — предметами. Если с помощью специальных призматических очков еще раз перевернуть изображение мира на сетчатке, т. е. по существу вернуть его в нормальное положение,— мозг после некоторого усилия приспосабливается и к этому. Благодаря работе мозга человек, пользуясь одним глазом, может в известных пределах судить о расстоянии до предмета, получать правильное представление о его форме. Мозг, разум в сложной мозаике узоров, возникающих на сетчатке глаза, выбирает (путем анализа и синтеза, использования прошлого опыта) главное и второстепенное, изображение и фон. Глаза нуждаются в разуме, чтобы опознать предметы, локализовать их в пространстве. Но и мозг вряд ли мог бы развиться без глаза, без информации об отдаленных предметах.

    А теперь попробуем разобраться в самом сложном. Как возникает в сетчатке ощущение света? Полностью этот процесс еще не изучен, но основные принципы превращения светового раздражения в электрический импульс, бегущий по зрительному нерву в центры головного мозга, более или менее ясны.

    Рис. 6. Схема строения сетчатки глаза (по С. И. Вавилову) 1 — пигментный слой; 2 — слой палочек и колбочек; 3—7 — зернистые слои; 8 — ганглиозные клетки; 9 — слой нервных волокон; 10 — внутренняя ограничивающая оболочка. Стрелкой указано направление световых лучей

    Сетчатка глаза человека имеет десять слоев (рис. 6), Наружный слой, примыкающий непосредственно к сосудистой оболочке глаза, состоит из клеток, заполненных черным пигментом и совершенно непроницаемых для света. Во втором слое расположены основные элементы восприятия света — нервные клетки, за форму названные палочками и колбочками (рис. 7). В последующих слоях ретины находятся биполярные, грушевидные и ганглиозные нервные клетки, а также последовательно соединяющие их нервные волокна. Отростки ганглиозных клеток, образующие десятый, самый внутренний слой сетчатки, прилегающий к стекловидному телу, собраны в один пучок — зрительный нерв, который выходит за пределы глазного яблока и направляется к мозгу. Таким образом, в сетчатке нервный импульс, возникший под влиянием светового раздражения, проходит по системе, состоящей из четырех последовательно связанных между собой нервных клеток, и лишь затем по зрительному нерву поступает в центры мозга.

    При взгляде на строение сетчатки удивляет такой непонятный на первый взгляд факт. Палочки и колбочки, непосредственно воспринимающие воздействие лучей, расположены не на поверхности сетчатки, не на границе со стекловидным телом, а где-то в глубине. Своими чувствительными верхушками они обращены не навстречу лучам Солнца, а в противоположную сторону. Возникающие в палочках и колбочках импульсы нервного возбуждения двигаются сначала как бы навстречу потоку световых квантов по системе нервных клеток и волокон. Чем же объяснить такое странное устройство зрительного аппарата? Очевидно, тем, что нежные палочки и колбочки в этом случае защищены от прямого действия света, сохраняют способность реагировать на незначительное воздействие лучей.

    Светочувствительные элементы сетчатки обладают также способностью к некоторому движению (ретиномоторные реакции), что позволяет им занять положение, наиболее удобное для восприятия света.

    Теперь рассмотрим непосредственный механизм зрительного восприятия. Существуют два самостоятельных механизма зрения. Один обеспечивает восприятие цвета и различение деталей изображения, предмета.1 Этот механизм дневного, цветового, зрения связан с колбочковым аппаратом. Другой, отличающийся несравненно большей световой чувствительностью, дает только ощущение темноты и света. Он связан с палочковым аппаратом и называется сумеречным зрением.

    Рис. 7. Палочка (а) и колбочка (б) при увеличении 1000 раз

    На поверхности сетчатки более или менее равномерно расположено 130 млн. палочек. В центре сетчатки — в области так называемого желтого пятна и особенно центральной ямки (непосредственно напротив зрачка) находятся преимущественно колбочки — примерно 7 млн.

    Такое распределение имеет особый смысл. Дневное зрение осуществляется в условиях поступления в глаз света сравнительно большой интенсивности. Пучок света, проходящий через суженный вследствие этого зрачок, попадает на небольшой участок сетчатки, расположенный в самом ее центре, т. е. на область желтого пятна. Здесь же находятся колбочки — элементы зрительного восприятия, приспособленные к видению в этих условиях.

    У животных, лишенных способности различать цвета, желтое пятно отсутствует. Таковы кошка, собака, золотистый хомяк и многие другие животные. Лишь некоторые породы собак обнаруживают слабые зачатки цветового зрения. Колбочек в сетчатке собачьего глаза почти совсем нет. Собаки ведут свою родословную от сумеречных хищников (волков, шакалов), которые и не нуждались в совершенном аппарате дневного, цветового, зрения. Лошади, олени, овцы, свиньи различают некоторые участки спектра, например красный и зеленый, норки — желтый и синий. Среди животных лучше всего различают цвета обезьяны, особенно шимпанзе. Рыбы в большинстве также обладают цветовым зрением. В сетчатке глаза сокола, чайки, гуся, курицы — по два желтых пятна. Одно — для рассматривания предметов Двумя глазами одновременно, другое — для удобства пользования одним глазом. Есть в глазу и слепое пятно, лишенное светочувствительных элементов. Это то место, где в глаз входит зрительный нерв, образующий сосок, хорошо видный врачу-окулисту при осмотре глазного дна.

    При сумеречном зрении, в условиях слабой освещенности, зрачок максимально расширяется, чтобы пропустить в глаз возможно большее количество лучей. Падая на сетчатку под различными углами, лучи освещают ее более или менее равномерно. Такой освещенности соответствует и распределение палочек по сетчатке. Способность глаза приспосабливаться к условиям различной освещенности путем изменения диаметра зрачка — адаптация (к темноте или свету) — имеет существенное значение для создания условий наилучшего видения.

    Если вскрыть глаз животного, длительное время находившегося в темноте, и при слабом красном свете обнажить сетчатку, она окажется пурпурного или густо-розового цвета. После непродолжительного пребывания на свету окраска исчезает, сетчатка обесцвечивается. Пигмент, придающий окраску сетчатке в темноте и исчезающий на свету, получил название зрительного пурпура, или родопсина. Исчезновение пигмента на свету было названо выцветанием пигмента. Зрительный пурпур, содержащийся в наружных члениках палочек, принимает самое активное участие в восприятии света.

    Адаптация глаза к темноте — это прежде всего процесс восстановления зрительного пурпура, процесс, требующий для своего завершения около получаса. Спектр поглощения родопсина имеет максимум в области голубых лучей с длиной волны 5100 А (1 А = 10-10 м). Спектр поглощения родопсина совпадает со спектром светочувствительности палочек.

    Родопсин — сложный белок, состоящий из собственно белка-опсина и активного центра — ретиналя. По некоторым данным, опсин — соединение белка с фосфолипидом, основной строительный элемент светочувствительных мембран, на его долю приходится 92—95% мембранных белков. Две светочувствительные мембраны образуют диск. А стопка таких дисков (иногда несколько десятков и даже сотен) образует наружный членик палочки.

    Ретиналь — пигмент из группы каротиноидов — придает белку окраску. Его длинная молекула может изгибаться, приобретать разную геометрическую форму. Американский физиолог Дж. Уолд, удостоенный в 1967 г. Нобелевской премии за работу по фоторецепции, установил, что из всех возможных форм ретиналя только одна — цис-изомер — подходит к белковой части молекулы и участвует в механизме восприятия света. Квант света, попавший на молекулу родопсина, вызывает распрямление изогнутого цис-ретиналя. Распрямившаяся молекула ретиналя отщепляется от опсина и запускает процесс нервного возбуждения, для развития которого свет уже не нужен. В темноте родопсин восстанавливается, но продукты его распада не могут просто соединиться вновь. Этот процесс протекает в несколько стадий при участии ферментов. По строению ретиналь очень близок к витамину А, из которого он образуется. Если с пищей в организм поступает недостаточное количество витамина А, нарушается процесс синтеза ретиналя, восстановления обесцвеченного пурпура, что проявляется в сумеречной, так называемой куриной слепоте.

    Из колбочек глаза удалось выделить другой пигмент — йодопсин. Его спектральный максимум лежит в желто-зеленой области спектра (5550 А) и совпадает с максимумом чувствительности колбочек. Очевидно, йодопсин играет здесь ту же роль, что и родопсин в палочковом аппарате. Однако фотохимические превращения йодопсина изучены пока недостаточно.

    Итак, процесс восприятия света, как установил Д. Уолд, начинается с фотохимической реакции, в ходе которой происходит изменение конформации (геометрической формы) и распад молекул зрительных пигментов, а затем возникает электрический импульс. Колебания электрического потенциала сетчатки при ее освещении удается зарегистрировать в виде характерной кривой электроретинограммы (рис. 8). Однако энергия, освобождающаяся при фотохимической реакции, недостаточна для возникновения электрического импульса и распространения волны возбуждения по нерву. Расчеты показывают, что необходимо усиление этого процесса приблизительно на 4—5 порядков.

    Ученые Азербайджана во главе с Г. Б. Абдуллаевым получили данные, согласно которым в усилении фотоэлектрической реакции участвуют атомы селена. Этот «лунный» элемент, ближайший родственник серы, обладает полупроводниковыми свойствами и по своим оптическим характеристикам точно воспроизводит спектральную чувствительность глаза человека. Присутствие значительных количеств селена в сетчатке доказано. Даже однократное введение препарата этого элемента в организм значительно и длительно увеличивает световую чувствительность глаза.

    Рис. 8. Электроретинограмма при слабой (1) и сильной (3) вспышках света и на фоне введения в организм селена (2, 4)

    Благодаря механизму цветового зрения мы воспринимаем окружающий мир во всем многообразии его цветов и окрасок. Каким же образом колбочки, имеющие примерно одинаковое гистологическое строение, могут «различать» не только интенсивность света, но и его качественные различия — цвета? Для объяснения этого явления предложено много гипотез. Великий исследователь природы М. В. Ломоносов первым высказал мысль о наличии в сетчатке разных цветочувствительных элементов. В исследованиях английского астронома Юнга и немецкого физиолога Гельмгольца эта идея приобрела форму научной теории. Ученые исходили из известного факта, что белый свет Солнца представляет собой смесь лучей разной длины волн (от 4000 до 8000 А) и разной окраски — от красных до фиолетовых. Давно известно, что можно подобрать такие пары цветов солнечного спектра, которые при смешении дают белый цвет (например, желтый и синий, оранжевый и голубой). Такие пары цветов носят название дополнительных. Смешением двух цветов можно получить и другие промежуточные цвета. Основываясь на чисто физических представлениях, Юнг и Гельмгольц предположили, что в сетчатке глаза имеются колбочки трех видов, обладающие максимальной чувствительностью в красной, зеленой и фиолетовой областях спектра. Каждый вид колбочек способен воспринимать лучи других длин волн, но с меньшей чувствительностью. Равномерное возбуждение всех трех видов колбочек дает ощущение белого цвета. Различные комбинации раздражений могут вызвать ощущение любого цвета солнечного спектра.

    Теория Юнга-Гельмгольца при всей ее простоте и логичности долгое время не располагала прямыми доказательствами. Смелое предположение ученых подтвердили опыты, в которых удалось отвести электрические потенциалы от отдельных палочек и колбочек. С помощью электроретинографии было доказано существование трех видов колбочек, обладающих различной чувствительностью к световым лучам с разной длиной волны.

    Еще одно убедительное доказательство существования трех различных видов колбочек представила медицина. Установлено, что до 8% мужчин и около 0,5% женщин страдает разными видами цветовой слепоты, называемой также дальтонизмом — по имени известного английского физика Дж. Дальтона, страдавшего наиболее распространенным дефектом цветового зрения — неспособностью различать красный и зеленый цвета. Существуют три формы дальтонизма, соответствующие выпадению функции каждого из трех видов колбочек. Описаны и комбинированные формы вплоть до полной цветовой слепоты. В каждом случае посмертно наблюдались недоразвитие либо дегенерация части или всего колбочкового аппарата.

    Гены, ответственные за функцию цветового зрения, расположены в половой, так называемой Х-хромосоме. У мужчин она одна. Наличие в ней дефектного гена ведет к дальтонизму. У женщин, как правило, вторая, не измененная Х-хромосома маскирует дефект, и потому цветовой слепотой страдают преимущественно мужчины.

    Каковы пределы чувствительности глаза к свету? Эволюция глаза шла в условиях солнечного освещения, поэтому максимальная энергия света, которую мог бы без Ущерба воспринять глаз, ограничивается максимальной солнечной освещенностью: 0,01 кал/сек. Это соответствует свету лампы примерно в 200 тыс. свечей, расположенной на расстоянии 1 м от глаза. Таков верхний предел. А нижний палочковый аппарат столь чувствителен к свету, что размер этой чувствительности трудно даже представить. Согласно точным опытам, глаз, адаптированный к темноте, с широко раскрытым зрачком способен уловить и зарегистрировать от 5 до 14 квантов света в секунду. Таким образом, глаз по своей чувствительности превосходит все существующие оптические приборы и близок к физическому пределу чувствительности.

    Спектр солнечных лучей весьма широк: он простирается от радиоволн до рентгеновских лучей, от бесконечно больших до бесконечно малых. Наиболее коротковолновые лучи — рентгеновские и почти все ультрафиолетовые — не достигают поверхности Земли. Из оставшегося диапазона солнечного спектра наши глаза способны уловить и воспринять лишь сравнительно узкий участок — от 4000 до 8000 А. Чем же обусловлен такой выбор?

    Лучи Солнца с длиной волны короче 2900—2950 А задерживаются слоем озона в атмосфере и практически не достигают поверхности Земли. Естественно, что существование глаза, приспособленного к восприятию более коротких лучей, было бы биологически бесцельным. Более того, ультрафиолетовые лучи, способные разрушать сложные органические вещества и убивать живые клетки, в больших дозах могут вызвать ожог глаз — сильную боль, слезотечение. Сетчатка глаз человека чувствительна к лучам и короче 4000 А, но эти лучи в нормальном глазу до сетчатки не доходят. Хрусталик играет роль предохранительного светофильтра, поглощая лучи короче 4000 А и даже часть фиолетовых и синих лучей. Благодаря этому сетчатка глаза может работать, не подвергаясь опасности разрушения.

    Таким образом, граница видимости лучей со стороны коротких волн (около 4000 А) биологически вполне оправдана.

    Все же ультрафиолетовые лучи с длиной волны до 3200 А и даже еще короче воспринимаются глазом как лучи голубоватого оттенка. Строго говоря, они не являются, таким образом, невидимыми. Однако коротковолновая граница восприятия ультрафиолетовых лучей у разных людей различна. Видеть удается лишь интенсивные потоки излучения, и сетчатка глаза воспринимает, собственно, не ультрафиолетовые лучи как таковые, а вызванную ими голубоватую флуоресценцию (свечение) хрусталика. Биологического, информационного значения такое свечение не имеет. Впрочем, муравьи и пчелы видят в ультрафиолетовых лучах, и такое своеобразное зрение им, очевидно, полезно.

    Перейдем к другой границе видимости солнечного света, со стороны длинных волн. Здесь за пределами видимого света (7600 А) лежат так называемые инфракрасные лучи, излучаемые нагретыми телами. При температуре .тела человека максимум излучения лежит в области 9—10 мкм; с 1 см2 поверхности тела, в том числе и с внутренней поверхности глаза, излучается примерно 12 кал/сек, т. е. больше, чем попадает в глаз на прямом солнечном свету. Если бы эти лучи воспринимались сетчаткой, то «глаз внутри засветился бы миллионами свечей. По сравнению с этим внутренним светом потухло бы Солнце и все окружающее. Человек видел бы только внутренность своего глаза и ничего больше, а это равносильно слепоте» [С. И, Вавилов. Глаз и Солнце. М., Изд-во АН СССР, 1956, с. 114.]. Таким образом, и лучи, лежащие на длинноволновой границе видимого света, не могли бы в случае их восприятия глазом существенно обогатить наши представления о мире. Следовательно, пределы спектральной чувствительности глаза закономерны.

    Однако в природе встречаются случаи восприятия инфракрасных лучей. Их видят термоскопические глаза некоторых кальмаров. Гремучие змеи отыскивают добычу в кромешной темноте по тепловому излучению. Но эти исключения лишь подтверждают правило.

    Глаз приспособлен к рассеянному свету Солнца. Чувствительность его охватывает возможный диапазон интенсивности солнечных лучей. Переменная диафрагма — радужная оболочка — позволяет приспосабливаться к различным условиям облучения. Линза с переменной кривизной (хрусталик) обеспечивает четкое видение предметов, лежащих на разных расстояниях от нас. Благодаря особенности строения пределы восприятия лучей глазом ограничены биологически целесообразным диапазоном. Сетчатка защищена от вредных лучей. Ее спектральная Чувствительность совпадает с максимумом кривой энергии солнечного излучения. Все это — результат приспособления глаза к солнечному свету. «Глаз нельзя понять, не зная Солнца. Наоборот, по свойствам Солнца можно в общих чертах теоретически наметить особенности глаза, какими они должны быть, не зная их наперед» [1 С. И. Вавилов. Глаз и Солнце, с. 127.].

    Горячее дыхание светила

    Древо жизни на Земле зародилось, окрепло и продолжает расти и развиваться под благодатными солнечными лучами. Познакомимся же поближе с источником этих лучей, попробуем понять секреты той щедрости, с которой Солнце освещает и обогревает наш уголок необъятного космоса.

    Размеры Солнца огромны: его диаметр 1400 тыс. км, т. е. в 110 раз больше, чем у Земли. Современная наука позволяет вычислить даже такой немалый груз, как вес Солнца. Эту величину (2·1027 т) довольно трудно представить себе. Если бы Солнце ежесекундно теряло по 1 млрд. т своей массы, то и в этом случае половину своей массы оно потеряло бы только через 30 млрд. лет. Благодаря своей огромной массе и, следовательно, большой силе тяготения Солнце удерживает на разных расстояниях от себя девять больших планет, несколько тысяч маленьких (так называемых астероидов), множество комет и других, более мелких небесных тел, образующих единую солнечную систему.

    Среди планет солнечной системы Земля имеет средние размеры: самая маленькая планета — Меркурий — в 18 раз меньше Земли, а гигант Юпитер — в 1345 раз больше. Расстояние Земли от Солнца —149,5 млн. км. Только благодаря громадным размерам и ослепительной яркости Солнца мы видим его на небосклоне в виде сверкающего диска, а не крохотной точки. Астроном Юнг писал по этому поводу: представьте себе ребенка с такой длинной рукой, что он может коснуться Солнца. Он прикоснулся к Солнцу и обжегся, но скончался бы в глубокой старости, прежде чем почувствовал боль, так как нервное раздражение распространяется, согласно Гельмгольцу, со скоростью около 30 м в секунду.

    Если бы звук мог распространяться через межпланетное пространство, то это расстояние он преодолел бы за 14 лет; аппарат, летящий со скоростью 800 км/ч, — за 21 год. А луч света, который в это мгновение влетает в ваше окно, покинул поверхность Солнца всего 8 минут тому назад. Скорость света, достигающая 300 тыс. км/сек,— непревзойденный рекорд в материальном мире.

    Если на границе земной атмосферы перпендикулярно лучам Солнца расположить площадку в 1 см2, то на нее ежесекундно будет падать около 2 кал солнечной энергии (более точно — 1,93 кал). Не менее половины этой энергии поглощается и рассеивается атмосферой. Солнечная энергия обусловливает испарение воды с поверхности водоемов и суши, а значит, и циркуляцию облачности, и выпадение осадков. В круговороте воды играют роль и величина поверхности водоемов, и характер почв, и рельеф суши, но главная, активная роль принадлежит, бесспорно, Солнцу.

    Не менее важно влияние Солнца на циркуляцию воздушных масс в атмосфере. Нагрев поверхности суши и водоемов солнечными лучами приводит к повышению температуры и уменьшению удельного веса прилегающих к ним воздушных слоев, вызывает конвекционные токи воздуха, перемещения воздушных масс из областей высокого давления в области низкого давления. Циклоны и антициклоны, бризы, муссоны и пассаты, тропические ураганы и пустынные самумы — все это различные способы расходования энергии солнечных лучей.

    На Землю поступает всего одна двухмиллиардная часть лучей Солнца. Энергии, излучаемой Солнцем за 1 сек (3,7·1026 дж), достаточно для того, чтобы растопить и довести до кипения слой льда вокруг Земли толщиной более 1000 км. Это ежесекундное излучение превышает то количество энергии, которое использовано человечеством за всю его историю. Каждые трое суток Солнце дарит Земле больше тепла и света, чем можно было бы получить при сжигании всех запасов угля и нефти, всех лесов планеты. И это излучение продолжается не секунду, не сутки, а на протяжении миллиардов лет.

    Только один источник энергии способен поддерживать нужную температуру в солнечной печи в течение десятков миллиардов лет — это термоядерные реакции слияния легких ядер в более тяжелые. Атомный вес водорода 1,008, а гелия 4,003. Значит, ядро гелия тяжелее ядра водорода почти в четыре раза. Если возможно слияние четырех ядер водорода в ядре гелия (а этот процесс осуществляется во время взрыва водородной бомбы), то как объяснить уменьшение массы вещества? Ведь атомный вес четырех ядер водорода — 4,032.

    Свет, подобно другим видам энергии, долгое время считавшийся чем-то нематериальным, в XX в. получил, наконец, права гражданства, как особая разновидность материи, столь же фундаментальная, как вещество. Первым шагом к этому выводу стало блестящее открытие русского физика П. Н. Лебедева, установившего в 1899— 1909 гг. материальность светового луча, его способность оказывать давление на тела. Затем Эйнштейн доказал, что превращение массы и энергии происходит одновременно и параллельно; для всех видов энергии справедливо соотношение Е = mc2, где Е — количество энергии, m — масса вещества, с — скорость света.

    Таким образом, кажущуюся потерю массы при слиянии ядер водорода в ядро гелия можно объяснить тем, что выделяющаяся в процессе слияния энергия «уносит» эту массу в виде квантов излучения. О том, как велика энергия, выделяющаяся в результате синтеза ядер, можно судить по таким данным: 1 г массы водорода соответствует 20 триллионам (20·1012) ккал тепла. Для получения такого количества энергии нужно сжечь 20 тыс. т каменного угля.

    Общее количество энергии, выделяемой Солнцем, колоссально лишь потому, что размеры светила громадны. Но если подсчитать, сколько энергии выделяется на каждый килограмм его массы, то окажется, что удельная теплоотдача Солнцем (4,4 кал/кг) существенно меньше, чем теплоизлучение человеческого тела (22 кал/кг).

    В глубинах гигантского термоядерного котла Солнца плотность вещества в 11,4 раза превышает плотность свинца, но оно остается газообразным. Точнее, это плазма — четвертое состояние вещества, при котором ядра атомов, лишенные электронных оболочек, упаковываются более плотно. Лучистая энергия, освобождающаяся в центральных областях Солнца,— это рентгеновское излучение, рожденное ядерными реакциями и столкновениями движущихся атомов и электронов. Бесчисленное множество зигзагов, поглощений и новых излучений совершает пучок рентгеновских лучей, прежде чем вырваться ив солнечных недр к поверхности. И хотя он распространяется со скоростью света, его путешествие по извилистому маршруту к поверхности занимает в среднем около 20 тыс. лет. На этом пути рентгеновское излучение постепенно преображается. После каждого зигзага длина волны излучения несколько увеличивается, пока рентгеновские лучи не превращаются почти полностью в ультрафиолетовый и видимый свет.

    В результате бесчисленного количества поглощений и излучений энергия достигает, наконец, такого сравнительно разреженного слоя солнечной атмосферы, который ужа не поглощает полностью идущий из глубин лучистый поток, хотя сам еще светится довольно ярко. Этот слой солнечной атмосферы, называемый фотосферой, толщиной около 300 км образует видимую глазом в телескоп блестящую поверхность Солнца, четкие контуры солнечного диска. О более высоких слоях атмосферы мы можем судить с помощью специальных приборов, либо в периоды солнечных затмений, когда яркий солнечный диск закрыт Луной. В эти краткие моменты удается обнаружить по самому краю Солнца тонкую полоску розового сияния с отходящими от нее во все стороны розовыми выступами различной формы — протуберанцами. Это так называемая хромосфера. Далее, на расстоянии иногда нескольких радиусов Солнца распространяется бледно-серебристое сияние — солнечная корона.

    Вся фотосфера Солнца состоит как бы из отдельных зерен, гранул, величиной 700—2000 км, которые разделены между собой темными промежутками. Продолжительность жизни гранулы — всего 3—5 мин.

    На видимой поверхности Солнца можно часто наблюдать и другие интересные образования — солнечные пятна. Двести лет назад астрономы полагали, что темные пятна — это вершины солнечных гор, возвышающиеся над океаном жидкой лавы во время отливов. На рубеже XIX в. английский астроном Уильям Гершель высказал предположение, что пятна представляют собой участки твердой холодной поверхности Солнца, видные в просветы между сверкающими раскаленными облаками. Сейчас мы знаем, что пятна лишь относительно темны и холодный на ярком солнечном диске они кажутся темными, так как их температура на 1100—1200° К [Величина 1 градуса по шкале Кельвина совпадает с величиной 1 градуса по Цельсию. Нулевая точка соответствует температуре —273° С (абсолютный нуль)] ниже температуры фотосферы. Размеры солнечных пятен различны: в среднем их диаметр 7—15 тыс. км, а наиболее крупные достигают в поперечнике 50—100 и даже 230 тыс. км. Пятна размером больше 40 тыс. км видны на Солнце невооруженным глазом. Возникают пятна на уровне фотосферы. Но дно пятна, образующее тень, располагается в среднем на 1000—1400 км глубже его краев. Таким образом, пятно представляет собой воронку, стенки которой видны как полутень. Крупные пятна более глубоки (см. рис. на вклейке). Вещество Солнца в пределах пятен находится в медленном вихревом движении, причем направление вращения в северном полушарии по часовой стрелке, в южном — против. Холодная материя поднимается в области пятна и растекается вдоль поверхности, постепенно прогреваясь.

    Самое интересное в солнечных пятнах — наличие колоссальных магнитных полей (2—5 тыс. гаусс). Величина их в тысячи раз превышает напряженность общего магнитного поля Солнца. Силовые линии располагаются так, как будто пятно представляет собой полюс гигантского прямого магнита с осью, направленной в глубь Солнца. Чем больше пятно, тем выше напряженность его поля. Источником этих полей служат электрические токи чудовищной силы — до 10 тыс. млрд. ампер. Струи горячего ионизированного газа выносят сгоревшее ядерное топливо в наружные слои, а охлаждающийся газ переносит свежие порции горючего к центру «котла». Вследствие вращения Солнца газовые потоки закручиваются в вихри, которые отрываются, как кольца дыма, поднимаются к поверхности и, пробиваясь сквозь фотосферу, образуют пары солнечных пятен. И пятна, и сопровождающие их мощные магнитные поля — проявления гигантских термоядерных процессов, происходящих в глубинах Солнца. Газ внутри пятен движется вдоль магнитных силовых линий и охлаждается за счет расширения.

    Пятна на Солнце наблюдаются главным образом по обе стороны экватора, чаще всего группами. Головное и хвостовое пятна группы обычно наиболее велики по размерам и имеют противоположную полярность. В северном и южном полушарии головные пятна групп всегда имеют противоположную полярность. Количество, размеры и длительность существования пятен на Солнце подчиняются своеобразным циклическим закономерностям. Самый короткий цикл имеет продолжительность 27 суток и связан с вращением Солнца вокруг своей оси. Наибольшее значение и известность имеет 11-летний цикл. Годы «спокойного Солнца», в течение которых пятен наблюдается очень мало, сменяются годами максимальной солнечной активности. С началом нового 11-летнего периода полярность пятен в северном и южном полушариях Солнца меняется на противоположную. Поэтому полный цикл солнечной активности составляет 22 года. Астрономы различают и более длительные циклы солнечной активности; их продолжительность 78—80, 190 лет и более.

    С солнечными пятнами, с ритмом их образования и исчезновения связаны и другие проявления солнечной активности — протуберанцы, факелы (гигантские светящиеся облака, имеющие более высокую температуру, чем окружающая фотосфера), вспышки. Они возникают всегда в непосредственной близости от пятен, где перепады напряженности магнитных и связанных с ними электрических полей достигают максимальной величины. Во время вспышки гигантские массы солнечного вещества со скоростью 1000—3000 км/сек и более выбрасываются из хромосферы. Вспышки возникают очень быстро — в течение 10—30 сек; они носят характер взрыва. Яркость вспышки в момент ее максимума может быть в три-четыре раза выше яркости фотосферы; солнечный диск на ее фоне кажется темным. Температура солнечного вещества в месте вспышки достигает 10—15 тыс. градусов, а ионизация атомов хромосферы увеличивается в 10 раз.

    Вспышки — источники мощного ультрафиолетового и рентгеновского излучений, радиоволн, а также больших потоков заряженных и быстро летящих частиц солнечного вещества, чаще всего протонов с энергией 100 млн. эв и больше. Протонные потоки, возникающие во время хромосферных вспышек на Солнце, представляют очень серьезную опасность для космонавтов, покидающих плотные слои земной атмосферы. Самая толстая оболочка космического корабля пока не в состоянии защитить людей от воздействия мощного излучения, от опасности лучевой болезни. В связи с этим очень большое значение имеет прогнозирование солнечных вспышек. Работы в этом направлении уже ведутся на протяжении нескольких лет. По величине, количеству и характеру пятен, по крутизне перепадов напряженности их магнитных полей ученые предсказывают (и не без успеха) не только время появления, но и мощность предполагаемых вспышек.

    Однако события, происходящие на Солнце, непосредственно касаются не только космонавтов. Вся наша Земля — не что иное, как гигантский космический корабль, летящий со скоростью 30 км/сек сквозь бездну космического пространства. И хотя воздушная оболочка — атмосфера — надежная защита земной поверхности, все же раскаты космических бурь, гигантские потрясения, охватывающие Солнце, доносятся и до нее всего за 8 минут, а солнечная корона столь широка, что, быть может, соприкасается с земной атмосферой.

    Если вспомнить, каковы масштабы явлений, происходящих на Солнце в периоды максимума его активности, легко понять, что ни расстояние, ни толстая воздушная оболочка не защищают полностью Землю от воздействия солнечных вихрей. Потоки невидимых излучений, колоссальные облака солнечного газа вторгаются тогда в верхние слои атмосферы. Наши органы чувств под покровом толстого воздушного одеяла остаются в неведении о штормах, прокатывающихся по окраинам атмосферы. Но неистовство этих бурь находит отражение во множестве грозных явлений. 12 ноября I960 г. астрономы увидели ослепительный взрыв на Солнце. Всего через шесть часов гигантское облако солнечного водорода (16 млн. км в поперечнике) столкнулось с Землей (скорость его движения в момент столкновения равнялась примерно 6,5 тыс. км в 1 сек). Вторжение посланников солнечной вспышки вызвало целую цепь сильнейших потрясений. Стрелки компасов заметались. На протяжении многих часов не действовала дальняя радиосвязь: ионизация воздуха настолько усилилась, что ионосфера перестала отражать радиоволны. Телетайпы отстукивали несусветную тарабарщину. Пилоты потеряли связь с контрольными станциями и радиомаяками. Красные сполохи полярных сияний просвечивали даже сквозь облака и были видны не только за Полярным кругом, но и в средних широтах. На севере электрические лампочки в домах мигали, как во время неистовой пурги, хотя погода стояла ясная, безветренная. Хаос продолжался больше недели. Конечно, такие вспышки бывают не часто, но в годы максимума солнечной активности опасность нарушений связи вполне реальна.

    Воздействие солнечной активности на земную жизнь не ограничивается моментами хромосферных вспышек. Циклоны, бури, смерчи нередко возникают в периоды максимумов активности Солнца. Первые упоминания о солнечных пятнах встречаются в древних китайских рукописях II—IV вв. н. э. Наши предки считали появление пятен на Солнце божьим знамением, сулившим стихийные бедствия, войны, эпидемии. В Никоновской летописи 1371 г. отмечается: «Того же лета бысть знамение на Солнце, места черны по Солнцу, аки гвозди...» Наводнения, грозы, ураганы, засухи, проливные дожди и другие сугубо «земные» явления причинно связаны с мерным пульсом жизни Солнца. В 1957 г., когда солнечная активность была высокой, согласно данным метеорологов, на Земле произошло 110 больших катастроф типа наводнений, засух и т. п. В 1961 г. Солнце было относительно спокойнее, и таких катастроф отмечено 30.

    В 20-х годах нашего столетия советский ученый А. Л. Чижевский поставил перед собой цель проследить причинную связь между событиями на Солнце и земной жизнью. Он обратился к летописям, к монастырским хроникам, дневникам путешественников, запискам астрономов, к данным статистики, медицины, ботаники и других наук. Столь разнообразные источники помогли ему выяснить удивительные закономерности: холера, чума, дифтерия и другие инфекционные болезни активизируются в годы, совпадающие с максимумами солнечной активности или непосредственно следующие за ними. Вмешательство человека — проведение вакцинаций, успешное лечение и изоляция больных — нарушили природную цикличность эпидемий (рис. 9). С колебаниями солнечной активности связаны также циклические изменения количества лейкоцитов в крови, содержания в ней сахара, солей калия и кальция, свертываемости крови, сдвиги электрического потенциала кожи людей, периодические колебания плодовитости коров. Даже толщина колец на срезах деревьев, характеризующая скорость нарастания их живой массы, обнаруживает 11-летшою периодичность (см. рис. на вклейке).

    С точки зрения механизмов влияния сдвигов солнечной активности на земную биосферу следует различать две группы факторов.

    1. Вспышки и другие гигантские катаклизмы, характерные для периодов максимума солнечной активности, оказывают возмущающее воздействие па верхнюю атмосферу Земли и в сочетании с некоторым увеличением количества излучаемой Солнцем энергии довольно существенно нарушают глобальную схему циркуляции воздушных масс и воды в атмосфере. В результате в разных районах земного шара увеличивается или, наоборот, резко уменьшается количество осадков, возрастает количество наводнений, засух и других стихийных бедствий. Когда солнечная активность относительно мала, циклоны, несущие влагу с Атлантики, проносятся над Средиземным и Черным морями, Кавказом и Казахстаном. При этом орошаются и зеленеют степи, покрываются растительностью пустыни, наполняются водой Балшах и Аральское море, а Каспий, питаемый на 80% Волгой, мелеет. В лесной полосе беднеют водой реки, высыхают болота. Там стоят суровые малоснежные зимы, летом жарко. На севере укрепляется вечная мерзлота. Но вот солнечная активность возросла, «дорога циклонов» сместилась к северу и прошла над Францией, Средней Россией. Сохнут степи, мелеют Балхаш и Арал, переполняются водой Волга и Каспий. Леса между Окой и Волгой заболачиваются, выпадают обильные снега, зимой часты оттепели, а лето дождливое. Солнечная активность достигает максимума — и циклоны несутся над Шотландией, Скандинавией, над Белым и Карским морями. Степь превращается в полупустыню, мелеет Волга. На севере тают льды, отступает вечная мерзлота, тундровые озера мелеют.



    Рис. 9. Зависимость заболеваемости дифтерией (а) и острыми сердечными заболеваниями (б) от солнечной активности

    Пунктирная линия — заболеваемость, сплошная — солнечная активность, вертикальная линия — начало противодифтерийных прививок

    Изменение закономерностей круговорота воды и циркуляции воздушных масс вторично вызывает разнообразные сдвиги в биосфере: интенсивность нарастания годичных колец древесины, активность размножения различных сапрофитных микроорганизмов почвы, насекомых (саранчи, клопа-черепашки), грызунов (полевых мышей, ондатр на юге, леммингов на севере), урожайность основных сельскохозяйственных культур обнаруживает более или менее четко выраженную 11-летнюю периодичность. В разных районах земного шара максимумы и минимумы кривой урожайности не совпадают. Массовое размножение грызунов приводит к развитию эпизоотии, а затем и эпидемий чумы, туляремии, безжелтушного лептоспироза, инфекционного гепатита и т. п., которые в эпоху отсутствия эффективных средств борьбы также периодически повторялись. Колебания водного режима рек, обусловленные все теми же глобальными нарушениями циркуляции, служили причиной периодического ухудшения условий водоснабжения, а с ними — и условий распространения водных эпидемий холеры, брюшного тифа, дизентерии. Тот же механизм лежит в основе периодических увеличений численности комаров, москитов, клещей и вспышек переносимых ими заболеваний — малярии, желтой лихорадки, клещевых энцефалитов и т. п.

    2. Однако не все проявления реакции биосферы на колебания солнечной активности развиваются за счет периодических сдвигов в системе атмосферной циркуляции и выпадения осадков. Наряду с описанным существует и механизм более прямого, непосредственного влияния солнечных вспышек и генерируемого ими коротковолнового излучения на многие биологические процессы. Так, непосредственно после возникновения вспышки на Солнце статистически достоверно увеличивается число уличных автомобильных катастроф в крупных городах и общее число смертельных исходов, существенно возрастает число нервно-психических заболеваний, точнее, случаев их обострений, частота инфарктов миокарда и гипертонических кризов у сердечно-сосудистых больных.

    По статистическим данным, полученным советскими учеными в Свердловске, около 73% случаев инфаркта происходит именно в дни магнитных бурь. Частота инфарктов в эти периоды возрастает вдвое, а число внезапных смертей от разных причин — в 2,6 раза. Причем чем сильнее буря, тем значительнее учащение острых, внезапных заболеваний и смертельных исходов. Магнитные бури сопровождаются также резким кратковременным снижением количества лейкоцитов и протромбинового индекса (показателя свертываемости крови), электрического потенциала кожи человека и т. п. Причем все эти события развиваются даже раньше, чем потоки солнечного вещества достигают земной орбиты. Приходится допускать существование механизма непосредственного воздействия электромагнитных возмущений, возникающих в результате солнечных вспышек, па человека, на его нервную и сосудистую систему, на биосферу в целом. Такие возмущения, распространяющиеся, по-видимому, со скоростью света, могут иметь электрическую, магнитную, электромагнитную природу; это может быть радиоизлучение Солнца, изменение солнечного излучения в оптическом диапазоне, корпускулярное излучение Солнца. Под их влиянием, очевидно, возникают изменения, непериодические вариации электрического и магнитного поля Земли, низко- и высокочастотные поля и т. п. Однако вся многозвенная цепь причинно-следственных связей и отношений, протянувшаяся из недр Солнца к глубинам клеток земной биосферы, еще не прослежена во всех деталях.

    Бесспорно лишь, что влияние Солнца на земную жизнь еще значительнее, многообразнее и сложнее, чем можно было бы думать. Горячее дыхание светила подчиняет своему ритму жизнь на поверхности одной из его планет. Какова природа этих волн солнечной активности, волн времени, на которых покачивается хрупкая лодка жизни? Какие таинственные силы приводят в движение солнечный маятник? Поиски ответа на эти вопросы ведутся давно.

    На рубеже XX столетия английский ученый Э. Браун предположил, что возникновение пятен — вихрей в солнечном веществе — связано с притяжением планет, вызывающим приливы на Солнце. Браун, в частности, отметил, что 11-летний ритм солнечной активности почти совпадает с периодом обращения Юпитера — самой массивной планеты солнечной системы, равным 11,86 года. В своем первоначальном виде эта гипотеза была недостаточно убедительна: ведь приливообразующая сила Меркурия, гораздо меньшего по размерам, но расположенного значительно ближе к Солнцу, превышает влияние Юпитера в семь раз. Однако колебаний солнечной активности, соизмеримых с периодом обращения Меркурия (около трех месяцев), не обнаружено.

    Существенный шаг вперед был сделан после того, как с помощью электронно-вычислительных машин рассчитали положение и движение общего центра тяжести солнечной системы в целом. Благодаря вращению планет вокруг Солнца с различной угловой скоростью этот общий центр тяжести смешивается и не совпадает с центром Солнца. Хотя общая масса планет не достигает и пятисотой доли массы Солнца, но они в силу своего положения на разных расстояниях от центрального светила влияют на положение центра тяжести. Американский астроном П. Джозе вычислил, что Солнце само вращается вокруг этого гравитационного центра с периодом 178,77 земных лет, а это соответствует длительности одного из циклов солнечной активности.

    Расчеты американских математиков К. Вуда и Р. Вуда показали, что сложная орбита движения центра тяжести солнечной системы регулярно (при определенном расположении планет вокруг Солнца) претерпевает резкие сдвиги, «скачки», отделенные друг от друга уже знакомым нам интервалом в 11,08 лет! Весьма вероятно (хотя окончательно еще не доказано), что эти «рывки» влияют на движение масс вещества в недрах Солнца, а через них — и на скорость термоядерных реакций. Отсюда — уже один шаг до объяснения причин колебаний солнечной активности, происхождения пятен, вспышек, выбросов солнечного вещества и т. п. Влиянием планет, по данным этих ученых, можно объяснить и смену магнитной полярности пятен, и широту их возникновения на солнечном диске, и существование других солнечных циклов. Следовательно, не только Солнце влияет на разнообразные стороны бытия планет, но имеет место и обратное, по-видимому, также существенное влияние. Близость к нам Солнца, его роль в нашей жизни, его беспокойный характер делают необходимым постоянное внимательное наблюдение за ним. Не только подсчет ударов солнечного пульса, но и проникновение в движущие им механизмы — вот достойная задача для науки нашего времени!

    Энергия неиссякаемая и вездесущая

    Природные источники энергии — нефть, уголь, газ, торф, а также энергия рек, водопадов, ветров, используемые человеком, являются по существу концентратами солнечных лучей.

    Накопленная в течение миллиардов лет энергия Солнца расходуется во все возрастающем количестве. Пройдут сотни, а может быть, только десятки лет, и запасов земных источников энергии окажется недостаточно для удовлетворения нужд человечества. Правда, уже созданы промышленные установки, использующие энергию распада тяжелых атомных ядер; не за горами создание методов управления термоядерными процессами синтеза легких ядер, подобными тем, которые совершаются в недрах Солнца. Познание и использование этих источников помогут разрешить энергетическую проблему на Земле.

    Но есть еще один постоянный, неиссякаемый источник энергии — солнечный свет. Ежегодно Земля получает около 6·1017 квт-ч лучистой энергии. Это в 20 тыс. раз превышает потребность человечества в энергии на сегодняшний день. На долю каждого жителя Земли в сутки приходится свыше 1 млн. квт-ч энергии солнечного света. Это богатство практически не используется, за исключением ничтожной доли, усваиваемой растениями. Большая часть солнечных лучей, попав на Землю, отражается в мировое пространство, поглощается горными породами, поверхностными слоями морских вод, постройками городов, превращается в тепло.

    Люди уже приступили к прямому освоению и использованию солнечной энергии. Из нескольких возможных направлений наиболее простым кажется использование полупроводниковых солнечных батарей, непосредственно преобразующих лучистую энергию Солнца в электрическую. Работают солнечные батареи на принципе фотоэлектрического эффекта, открытого в 1888—1889 гг. русским физиком А. Г. Столетовым: кванты излучения выбивают с поверхности некоторых металлов электроны. Когда такой фотоэлемент включен в цепь, в ней под влиянием света возникает электрический ток. Чем больше энергия квантов света, тем шире круг металлов, пригодных для получения фотоэлектрического эффекта. Основная масса лучистой энергии Солнца (около 97%) сосредоточена в области длин волн 0,3—3 мкм. Превращать эту энергию в движение выбитых электронов способны фотоэлементы из кадмия, кремния, бора и некоторых других металлов высокой чистоты.

    Батареи, коэффициент полезного действия которых составляет 13—15%, ныне применяются при полетах автоматических станций к Марсу, Венере, при исследовании поверхности Луны. Использование этих батарей для удовлетворения земных энергетических нужд пока невозможно: слишком уж дороги их основные элементы — металлы-полупроводники. Однако не исключено, что в дальнейшем, по мере увеличения КПД солнечных батарей до 20— 25% и существенного снижения стоимости, станет возможным более широкое их использование. Чтобы этот способ использования энергии Солнца приобрел серьезное промышленное значение, необходимо будет покрывать полупроводниковыми пленками или пластинами большие пространства суши, а для выравнивания суточных колебаний выработки энергии включить в систему аккумуляторы (топливные элементы, способные переводить электроэнергию в химическую и обратно с КПД, близким к 100%). Для таких «полей» фотоэлементов требовались бы специальные защитные пластмассовые кассеты. Кроме того, они нуждались бы в постоянном квалифицированном уходе и надзоре. Это делает солнечную электростанцию такого типа нерентабельной (в ближайшем будущем).

    Другой проект предполагает вынести гигантскую батарею солнечных фотоэлементов площадью 9х9 км в космос, на высоту 30 тыс. км над определенной точкой земной поверхности. На такой высоте количество лучей, приходящееся на 1 см2 поверхности, а значит, и выработка электроэнергии вдвое выше, чем на Земле. Такая электростанция не зависит от погодных условий, не нуждается, следовательно, в выравнивании суточных колебаний выработки энергии и в постоянном уходе.

    Но особенности проекта создают другие трудности. Постоянный ток, отводимый от батареи, по кабелю передается на искусственный спутник Земли, где специальное устройство трансформирует его в высокочастотное излучение, удобное для транспортировки энергии на Землю без проводов. Там совершается новое ее превращение — в переменный ток удобной для потребителя частоты.

    Для улавливания лучистой энергии Солнца и ее преобразования непосредственно в электрическую может быть использован также термоэлектрический метод. Суть этого метода в следующем: две проволоки из различных металлов или сплавов, соединенные обоими концами, образуют термопару; если один из спаев нагреть, то в цепи потечет слабый электрический ток. Чем больше разница температур спаев, тем больше сила тока. Соединив параллельно несколько отдельных термопар, получим батарею термоэлементов. Если зачернить один из спаев батареи и подставить его лучам Солнца, такая система станет вырабатывать электричество непосредственно из солнечных лучей. А если на зачерненный спай будет падать не рассеянное излучение Солнца, а пучок лучей, предварительно сконцентрированный линзой или вогнутым зеркалом — рефлектором, то разница температур спаев может быть доведена до одной-полутора тысяч градусов. Соответственно возрастет и выработка электроэнергии.

    Задумываясь об энергетике будущего, о необходимости широкого использования солнечной энергии, ученые серьезно рассматривают и другие возможности, еще вчера относившиеся к области чистой фантастики. Так, академик Н. Н. Семенов полагает возможным осуществить, а затем и использовать в промышленных масштабах химическую систему, способную моделировать процесс фотосинтеза, накапливать солнечную энергию в виде энергии химической связи атомов органических соединений. Основания для такого смелого предположения Н. Н. Семенов видит в открытии ученых М. Е. Вольпина и А. Е. Шилова, осуществивших синтез аммиака и гидразина (фиксацию азота воздуха) при обычных температурах и давлении.

    Промышленный способ получения аммиака протекает при высоких температурах и давлениях. В клубеньках же бобовых растений бактерии осуществляют фиксацию азота в природных условиях. Этот процесс осуществляется микробами с помощью ферментных белков. Молекулы ферментов громадны. Но непосредственно осуществляет реакцию небольшая активная группа атомов, содержащая ионы ванадия или молибдена. Вольпин и Шилов показа-сли, что гидроокись ванадия фиксирует азот с КПД, близким к 100%. Четыре атома ванадия, переходя из двухвалентного в трехвалентное состояние, дают достаточно энергии для образования молекулы гидразина, а в несколько иных условиях — аммиака.

    Однако задача решена лишь наполовину. Модель биологического процесса усвоения азота должна предусматривать и механизм восстановления ванадия в двухвалентное состояние: реакция будет идти только в этом случае. По аналогии с живым организмом для этой цели следовало бы использовать солнечную энергию. Если работы, ведущиеся в этой области, окажутся плодотворными, можно будет наладить искусственный фотосинтез в промышленных масштабах. На огромных пространствах энергетических полей будут размещены кассеты с водным раствором взаимодействующих веществ и с непрерывным выходом продуктов реакции — богатых энергией соединений азота, углерода, водорода и кислорода. Производительность таких полей может вдвое-вчетверо превысить эффективность работы природных фотосинтезирующих машин-растений. Но и это — только планы, проекты.

    А каковы реальные возможности сегодняшнего дня? Они связаны в первую очередь с решением задачи сбора и концентрации солнечной энергии. Честь открытия такого способа принадлежит, очевидно, Архимеду. Древние источники сообщают, что более двух тысяч лет назад, в 212 г. до нашей эры, защищая родной город от нападения римлян, Архимед вывел население Сиракуз на стены города, вооружил их зеркалами и, сконцентрировав все их зайчики в одну точку, сжег римский флот. Так ли это было в действительности — сказать трудно, но идея сама по себе родилась в древности. Эффективность такого способа использования энергии Солнца сильно зависит от расстояния до объекта, приговоренного к сожжению. Чтобы поджечь сухое дерево на расстоянии 30 м, нужно вогнутое зеркало диаметром 3 м. Но если увеличить расстояние до 1 км, диаметр зеркала нужно увеличить до 500 м.

    Вряд ли кому-нибудь придет в голову заняться таким делом в наши дни. Но американский физик Дж. Пирс рассчитал, что чаша современного стадиона — весьма удобное место для экспериментов подобного рода и что недовольные болельщики могут попросту сжечь неугодного судью. Нужно только предварительно запастись кусками картона с наклеенной на них фольгой и потом одновременно направить все солнечные зайчики на жертву.

    Но если сконцентрировать солнечный зайчик для того, чтобы плавить металлы, получится солнечная печь. Гелиопечи, работающие во Франции, Испании, США, Индии, Алжире и других странах Африки, способны плавить металлы, кварц при 1500—2000° и более. На Пиренеях сооружена гигантская установка с 10-метровым параболическим зеркалом, собранным из 3500 маленьких стеклянных зеркал. В солнечном зайчике огромного зеркала, имеющем диаметр 50 мм, температура достигает 3400°С; это позволяет в течение 1 часа выплавлять 60 кг стали. Конечно, есть более дешевые способы плавки стали, но в солнечной печи получается особая сталь; она совершенно свободна от загрязнений и примесей, неизбежных при других методах плавки. Такой металл годен для самых ответственных специальных изделий.

    Еще более крупные гелиопечи позволят в будущем довести температуру до 4700°, а количество выплавляемого металла — до нескольких тонн. Теоретический предел температуры в таких печах — 5700°: невозможно путем концентрации лучей достичь температуры, более высокой, чем температура источника — в данном случае Солнца. Чтобы достичь более высоких температур, нужно использовать искусственный источник излучения — вольтову дугу.

    Большие возможности улавливания и использования энергии Солнца есть в нашей стране. В Средней Азии на 1 км2 поверхности падает в полдень поток лучистой энергии, равный по мощности Днепрогэсу. Южные районы страны — республики Средней Азии, Казахстан, Закавказье, Крым — в основном безлесные районы. Если удовлетворить потребность населения этих мест (более 50 млн. человек) только в горячей воде для бытовых нужд за счет энергии Солнца, то удалось бы сэкономить ежегодно более 3 млн. т угля. Но реальна ли эта задача?

    Определенный ответ на этот вопрос дают исследования ученых Физико-технического института Академии наук Узбекской ССР, где работает крупный отдел гелиофизики. Разработанные там проекты уже вошли или входят в жизнь. Вот некоторые из них. Крыша-котел позволяет получать воду с температурой 60—70°, а в случае нужды и более высокой (для бытовых нужд, обогрева дома) и даже аккумулировать тепло для использования ночью и в пасмурную погоду. Плоские водонагреватели конструкции узбекских гелиофизиков словно черепицей покрывают крыши дома. Изготовлены они из зачерненного снаружи рифленого металла, покрытого стеклом для получения «парникового эффекта», «горячего ящика». (Поглощая энергию видимого света, Земля, металл и т. п. частично излучают в более длинноволновой инфракрасной области. Стекло, задерживая это излучение, препятствует отдаче поглощенного тепла.) Внутри водонагревателей циркулирует вода. Если прибегнуть к двойному остеклению, удастся поднять температуру воды выше 70° С. Та же система летом может быть использована для охлаждения жилых помещений.

    Складная солнечная кухня-зонт пришлась по вкусу чабанам, геологам, изыскателям, строителям газо- и нефтепроводов. Кухня легко превращается в зонт со стулом, а ночью — в палатку, стоит лишь пристегнуть брезент.

    Конструкция бытового солнечного холодильника позволяет без затраты электроэнергии поддерживать температуру порядка + 2, +4° С. Зачерненная поверхность генератора нагревается (благодаря двойному остеклению) до 100—110° С, и в нем из поглотителя (хлористого кальция) выделяются пары аммиака. Под давлением в 18—20 атмосфер они поступают в концентратор и в сжиженном виде накапливаются в промежуточном резервуаре — ресивере. Ночью генератор охлаждается, давление паров в нем падает. Аммиак из ресивера испаряется и охлаждает внутренность холодильника, а надежная термоизоляция помогает сохранить низкую температуру и днем.

    В солнечной сушилке воздух, прогоняемый между разогретыми Солнцем зачерненными листами металла, нагревается до 60—80° С, а затем поступает в камеру, куда закладываются для сушки фрукты. Сухой горячий воздух отнимает у них влагу и выходит наружу. Трудно представить себе более простую конструкцию. А между тем она обладает очень важными преимуществами. В отличие от сушки на воздухе процесс в солнечной сушилке идет несравненно быстрее, и качество сушеных фруктов оказывается выше. Кроме того солнечный метод позволяет избегнуть загрязнения фруктов коптильным дымом.

    На принципе «горячего ящика» работают и простейшие опреснительные установки. Конденсируясь на внутренней поверхности стекла, влага стекает в специальные Резервуары. В южных районах нашей страны с помощью таких установок можно с 1 м2 остекленной поверхности получать 4—5 литров дистиллированной воды в сутки.

    Отличный способ улавливания и накапливания солнечной энергии — соляные бассейны. С глубиной в них увеличивается концентрация солей. Одновременно возрастает плотность воды, ее удельный вес (что препятствует перемешиванию слоев) и поглощение солнечных лучей. Поэтому самый глубокий, самый соленый и плотный слой воды оказывается и самым горячим. При глубине солнечного бассейна около 1 м температура придонного слоя может достигать 90—95° С. Накопленную энергию можно извлекать, превращая ее в пар низкого давления или отводя нагретую соленую воду в теплообменник. В последнем случае нижний горячий слой воды во избежание перемешивания следует отделить прозрачной пленкой. Устройство бассейна на берегу моря делает этот способ накопления солнечной энергии чрезвычайно простым и дешевым. Небольшие солнечные бассейны могут круглосуточно обеспечивать жилища горячей водой. Более крупные и глубокие бассейны могут аккумулировать тепло, необходимое в прохладное время года. Использование вместо соленой воды жидкого натрия позволит увеличить аккумуляцию энергии Солнца на 30—35%.

    Непосредственное использование энергии Солнца для нужд человека в наше время находится еще в зачаточном состоянии. Однако стремительное развитие энергетики, гелиофизики и полупроводниковой техники дает основание рассчитывать, что эра широкого использования лучистой солнечной энергии не за горами, что человек научится экономно, по-хозяйски использовать это великое богатство — неиссякаемый поток солнечного света.







     


    Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх