• 8.1. Электромагнитные взаимодействия как определяющие химический и биологический уровень организации материи
  • 8.2. Симметрия и асимметрия в природе
  • 8.3. Самоорганизация природы (понятие синергетики)
  • 8.4. Основные свойства самоорганизующихся систем
  • 8.5. Представление о жизни в современном естествознании
  • 8.6. Структурные уровни организации живой материи
  • 8.7. Гипотезы происхождения жизни
  • 8.8. Физико-химические предпосылки для зарождения жизни на Земле
  • 8.9. Теории эволюции органического мира
  • 8.10. Основы генетики
  • Вопросы для самопроверки
  • Глава 8

    ЖИВАЯ МАТЕРИЯ

    8.1. Электромагнитные взаимодействия как определяющие химический и биологический уровень организации материи

    Живое вещество, как и вся материя Вселенной, состоит из атомов и молекул, для которых уже известны определенные законы поведения, в том числе на квантово-молекулярном уровне. В этом смысле при научном познании живого представляется вполне возможным применение физических представлений и моделей по исследованию развития природы и закономерностей процессов, проходящих в живом организме. По этому поводу советский физико-химик и биофизик М. В. Волькенштейн писал: «В биологии как в науке о живом возможны только два пути: либо признать невозможным объяснение жизни на основе физики и химии, либо такое объяснение возможно и его надо найти, в том числе на основе общих закономерностей, характеризующих строение и природу материи, вещества и поля».

    По мнению многих исследователей, изучение проблем генетического кода, молекулярной природы наследственности и т. д. на заключительном этапе сводится к квантово-механическому объяснению всех этих явлений. В связи с этим следует отметить, что атомно-молекулярное толкование большинства явлений живого на сегодняшний день представляется наиболее верным. Вероятно, что живой и неживой природой управляют одни законы, однако механизм их проявления разный, что подтверждается синергетикой как наукой о неравновесных системах и самоорганизации.

    Существование физических полей разной природы в живых организмах представляет значительный интерес. Это связано с одной стороны с раскрытием сущности физики живого, а с другой – с взаимодействием полей живых организмов с полями окружающей природной среды, обусловленными главным образом гелио– и геофизическими факторами. Эти взаимодействия обеспечивают живому организму необходимый ему объем информации в процессе жизнедеятельности. Функционирование всех систем живого организма динамично отражается в мозаике физических полей и излучений, исходящих из него, которые, в свою очередь, зависят от параметрических изменений естественных фоновых полей и излучений, окружающих живой организм.

    Идентификация полей и излучений, например, человеческого организма сейчас широко используется в медицине для определения динамики различных физиологических процессов и выявления «неполадок» в функционировании определенных органов. Поэтому физические поля и излучения живого организма как бы есть своеобразное «табло» его физиологических процессов. Например, человеческий организм способен продуцировать инфракрасное излучение (ИК) и излучения сверхвысокой частоты (СВЧ), электромагнитные поля (ЭМП) и излучения (ЭМИ) и т. д. По существу, живой организм окружен биополем, под которым следует понимать присущую ему совокупность физических полей.

    Электромагнитное взаимодействие обусловливается электрическими и магнитными зарядами. Электрический заряд всегда связан с элементарными частицами. Магнитные силы порождаются движением электрических зарядов, то есть электрическими токами. Согласно закону Кулона, сила электрического взаимодействия будет силой притяжения или отталкивания в зависимости от знаков взаимодействующих зарядов. Видимый свет, являющийся основой существования зеленых растений, синтезирующих органическое вещество на Земле, да и всего живого, является электромагнитным излучением определенного диапазона частот.

    Согласно теории советского биохимика А. И. Опарина электромагнитные излучения Солнца и электрических разрядов явились энергетической основой абиогенного происхождения жизни. Именно с их помощью происходил процесс образования биомолекул: аминокислот, нуклиотидов, полисахаридов, белковых комплексов, а затем клетки как главной структуры живого.

    Электромагнитные поля и электромагнитные излучения являются основными видами излучения для живых организмов. Почти все носители информации, воспринимаемые нашими органами чувств, имеют электромагнитную природу. Электромагнитные взаимодействия характеризуют структуру и поведение атомов, отвечают за связи между молекулами различных веществ, таким образом определяя химические и биологические явления.

    Электромагнитные поля и излучения в живом организме связаны с возникновением, движением и взаимодействием электрических зарядов в процессе его онтогенеза. На клеточном уровне они возникают при работе митохондрий, на органном и организменном уровнях – при работе сердца и токе крови в сосудах, при нервных и мышечных сокращениях.

    Электрические явления в живом организме характеризуются определенными последовательностями электрических импульсов и ритмами определенной характеристики, поскольку в каждом органе вырабатываются свои определенные, специфические электроколебательные процессы. Ритмичность и частота колебаний этих процессов зависят от степени активности организма (сон, бег, сильный стресс и т. д.). В свою очередь, активность физиологического состояния организма (например, человека) и его работоспособность также зависят от биоритмов и периодически меняются сообразно времени суток. Биологические ритмы как следствие эволюционного процесса проявляются на всех уровнях организации живой материи, начиная с клеток и заканчивая биосферой.

    Ритмичность на уровне клеток живого организма определяется биохимическими колебательными процессами, связанными с движением ионов, необходимых для жизнедеятельности клетки (К+,Са2+ и др.), как вовнутрь клетки, так и из нее. Доказано, что общим регулятором внутриклеточных процессов являются ионы кальция. Именно они и их концентрация обеспечивают биологические ритмы клеток.

    Ритмичность на уровне растительных организмов проявляется в годовом изменении темпов роста, суточном движении листьев; на уровне животных организмов в темпах двигательной активности, в колебаниях температуры, функционировании органов внутренней секреции, синтеза гормонов, белков, половой активности и т. д. Американский математик и кибернетик Н. Винер писал, что «именно ритмы головного мозга объясняют способность чувствовать время». Чем сложнее система, тем она обладает большим количеством биоритмов. Биоритмы определяют биологическое время и свойственны неравновесным самоорганизующимся живым системам.

    Интенсивность физико-химических процессов в мембране и, следовательно, в самой клетке определяется величиной мембранного потенциала. Это значит, что энергия электрического поля в мембранах, подобно конденсаторам, играет важную роль в поддержании устойчивого/неустойчивого равновесия и рассматривается как резерв свободной энергии. Эта энергия, наряду с энергией АТФ (аденозинтрифосфат) и перекисного окисления липидов необходима живому организму для функционирования и развития.

    Биохимические реакции в живом организме обусловлены биологическим током, возникающим при движении электронов и, в основном, ионов. При этом возрастает роль поляризации клеток и биополимерных молекул, роль структуры воды в процессах метаболизма. Изменения электрических свойств организмов связано с перераспределением в них электрических зарядов при их движении. Это же происходит и в потоке крови. Крови свойственны электропроводность и магнетизм. При ее движении по сосудам возникают электродинамические, электромагнитные и гидродинамические взаимодействия со стенками сосудов.

    Следовательно, электромагнитные взаимодействия являются атрибутом существования живой материи на любом уровне ее организации. Живые организмы буквально плавают в море всевозможных физических полей – как внутренних, вырабатываемых самими организмами, так и внешних.

    8.2. Симметрия и асимметрия в природе

    Симметрия и асимметрия являются объективными свойствами природы, одними из фундаментальных в современном естествознании. Симметрия и асимметрия имеют универсальный, общий характер как свойство материального мира.

    Симметрия (от греч. symmetria – соразмерность, порядок, гармония) является всеобщим свойством природы. Представление о симметрии у человека складывалось тысячелетиями. Термин «симметрия» фигурирует в представлениях человека как элемент чего-то «правильного», прекрасного и совершенного. В своих раздумьях над картиной мироздания человек определял симметрию как магическое качество природы, ее целесообразность, совершенство и старался отразить эти свойства в музыке, поэзии, архитектуре. В определенной мере симметрия выражает степень упорядоченности системы. В связи с этим имеется тесная корреляционная связь энтропии как меры неупорядоченности с симметрией: чем выше степень организованности вещества, тем выше симметрия и ниже энтропия.

    Степень симметрии природных систем отражается в симметрии математических уравнений, законов, отображающих их состояние, в неизменности каких-либо их свойств по отношению к преобразованиям симметрии.

    Симметрия – это понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, то есть некий элемент гармонии.

    Асимметрия – понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия, что связано с изменением и развитием системы.

    Из определений симметрии и асимметрии следует, что развивающаяся динамическая система должна быть обязательно несимметричной и неравновесной.

    Современное естествознание представлено целой иерархией симметрий, которая отражает свойства иерархии уровней организации материи. Выделяют различные формы симметрий: калибровочные, пространственно-временные, изотопические, перестановочные, зеркальные и т. д. Все эти виды симметрий подразделяются на внешние и внутренние.

    Внутреннюю симметрию невозможно наблюдать, она скрыта в математических уравнениях и законах, выражающих состояние исследуемой системы. Пример тому – уравнение Максвелла, описывающее взаимосвязь электрических и магнитных явлений, или теория гравитации Эйнштейна, связывающая свойства пространства, времени и тяготения.

    Внешняя симметрия (пространственная или геометрическая) представлена в природе большим многообразием. Это симметрия кристаллов, молекул, живых организмов.

    Для чего нужна симметрия живому и как она возникла?

    Живые организмы формировали свою симметрию в процессе эволюции. Зародившиеся в водах океана, первые живые организмы имели правильную сферическую форму. Внедрение организмов в другие среды заставляло их адаптироваться к новым специфическим условиям. Один из способов такой адаптации – симметрия на уровне физической формы. Симметричное расположение частей органов тела обеспечивает живым организмам равновесие при движении и функционировании, жизнестойкость и адаптацию. Довольно симметричны внешние формы крупных животных, человека. Растительный мир организмов также наделен симметрией, что связано с борьбой за свет, физической устойчивостью к полеганию (закон всемирного тяготения). Например, конусообразная крона ели имеет строго вертикальную ось симметрии – вертикальный ствол, утолщенный книзу для устойчивости. Отдельные ветви симметрично расположены по отношению к стволу, а форма конуса способствует рациональному использованию кроной светового потока солнечной энергии, увеличивает устойчивость. Таким образом, благодаря притяжению и законам естественного отбора ель выглядит эстетически красиво и «построена» рационально. Внешняя симметрия насекомых и животных помогает им держать равновесие при движении, извлекать максимум энергии из окружающей среды и рационально ее использовать.

    В физических и химических системах симметрия приобретает еще более глубокий смысл. Так, наиболее устойчивы молекулы, обладающие высокой симметрией (инертные газы). Симметрия молекул определяет характер молекулярных спектров. Высокая симметрия характерна для кристаллов. Кристаллы – это симметричные тела, их структура определяется периодическим повторением в трех измерениях элементарного атомного мотива.

    Асимметрия также широко распространена в мире.

    Внутреннее расположение отдельных органов в живых организмах часто асимметрично. Например, сердце расположено слева у человека, печень – справа и т. д. Л. Пастер, французский микробиолог и иммунолог, выделил левые и правые кристаллы винной кислоты. Молекула ДНК асимметрична – ее спираль всегда закручена вправо. Все аминокислоты и белки, входящие в состав живых организмов, способны отклонять поляризованный луч света влево.

    В отличие от молекул неживой природы, где левые и правые молекулы встречаются часто, то есть носят в основном симметричный характер, молекулы органических веществ характеризуются ярко выраженной асимметрией. Придавая большое значение асимметрии живого, В. И. Вернадский предполагал, что именно здесь проходит тонкая граница между химией живого и неживого. Л. Пастер также, основываясь на этих признаках, провел границу между живым и неживым. Следует также отметить, что живые организмы (растения) в процессе жизнедеятельности поглощают из окружающей среды (почвы) в значительной степени химические соединения минеральной пищи, молекулы которой симметричны и в своем организме превращают их в асимметричные органические вещества: крахмал, белки глюкозу и т. д. Симметрия молекул пищевых веществ живого организма согласуется с симметрией молекул самого организма. В противном случае пища будет несовместимой (ядовитой).

    Структура компонентов клетки также асимметрична, что имеет большое значение для ее обмена веществ, энергетической обеспеченности, а также способствует более высокой скорости протекания биохимических реакций.

    Симметрия и асимметрия – это две полярные характеристики объективного мира. Фактически в природе нет чистой (абсолютной) симметрии или асимметрии. Эти категории – противоположности, которые всегда находятся в единстве и борьбе. Там, где ослабевает симметрия, возрастает асимметрия, и наоборот. На разных уровнях развития материи ей свойственна то симметрия, то асимметрия. Однако эти две тенденции едины, а их борьба носит абсолютный характер. Эти категории тесно связаны с понятиями устойчивости и неустойчивости систем, порядка и беспорядка, организации и дезорганизации, отражающими свойства систем и динамику развития, а также взаимосвязь между динамическими и статическими законами.

    Полагая, что равновесие есть состояние покоя и симметрии, а асимметрия приводит к движению и неравновесному состоянию, можно считать, что понятие равновесия играет в биологии не менее важную роль, чем в физике. Принцип устойчивости термодинамического равновесия живых систем характеризует специфику биологической формы движения материи. Именно устойчивое динамическое равновесие (асимметрия) является ключевым принципом постановки и решения проблемы происхождения жизни.

    8.3. Самоорганизация природы (понятие синергетики)

    Случайные отклонения параметров системы от равновесия (флуктуации) играют очень важную роль в функционировании и существовании системы. Один из двух типов случайностей имеет направленный, созидательный и эволюционный характер, а второй создает неопределенность и играет деструктивную роль, отсекая все то лишнее и ненужное, что не укладывается в рамки фундаментальных законов и принципов бытия. Вследствие такого совместного действия возникает неустойчивость в системе, которая может служить толчком к возникновению из беспорядка (хаоса) определенных новых структур. Последние при благоприятных условиях переходят во все более устойчивые и упорядоченные аттракторы (от лат. attractio – притяжение). В дальнейшем их самопроизвольное (спонтанное) образование идет за счет внутренней перестройки самой системы и согласованного кооперативного взаимодействия всех ее частей и элементов в соответствии с требованиями окружающей среды. Самоупорядочивание системы всегда связано со снижением энтропии в ней. Случайность и дезорганизация на атомно-молекулярном уровне здесь выступают в качестве созидающей силы, которая упорядочивает состояние системы уже на макроуровне и объединяет ее элементы в единое целое. Это явление получило название самоорганизации.

    Следовательно, самоорганизация – это процесс спонтанного возникновения порядка и организации из беспорядка (хаоса) в открытых неравновесных системах. За счет роста флуктуаций при поглощении энергии из окружающей среды система достигает некоторого критического состояния и переходит в новое устойчивое состояние с более высоким уровнем сложности и порядка по сравнению с предыдущим.

    Таким образом, возникающая из хаоса упорядоченная структура (аттрактор) является результатом конкуренции множества всевозможных состояний, заложенных в системе. В результате конкуренции идет самопроизвольный отбор наиболее адаптивной в сложившихся условиях структуры. На такой концепции построена модель универсального эволюционизма, где дарвинское учение об изменчивости, наследственности и естественном отборе получило фундаментальное методологическое обоснование. Изменчивость окружающего мира обусловливается случайностью и неопределенностью как фундаментальным свойством материи. Наследственность, от которой зависит настоящее и будущее, определяется прошлым. Степень зависимости от прошлого определяется «памятью» системы, которая теоретически может принимать значения в диапазоне от нуля (хаотические образования) до максимально бесконечной величины (жесткие причинно обусловленные системы). Однако реальные системы имеют некоторый небольшой диапазон «памяти», определяемый уровнем их организации. Изменчивость дает возможность появиться многообразию различных вариантов развития систем, но наследственность значительно ограничивает их число. Она отбирает только жизненные, наиболее целесообразные и устойчивые в сложившейся обстановке структуры, устраняя при этом все нежизненные и неустойчивые.

    Прошедшие отбор и передающиеся по наследству жизненные структуры постепенно под влиянием важных факторов накапливают определенные количественные изменения, что ослабляет их динамическую устойчивость (гомеостаз). Эти количественные изменения могут перейти в качественные путем скачка. При этом система на некоторое время оказывается в неустойчивом, флуктуационном состоянии, теряет «наследственную память». Характер ее последующего развития будет определяться случайными, непредвиденными факторами, действующими в это время на систему. При этом у системы для выхода из флуктуации есть только два пути: либо деградация и разрушение, либо самоорганизация, усложнение и эволюция. Подобный сценарий развития материи идет на всех ее структурных уровнях как череда сменяющих друг друга постоянных изменений. Таким образом, порядок и беспорядок, организация и дезорганизация выступают как диалектическое единство, их взаимодействие поддерживает саморазвитие системы.

    Однако самым трудным положением самоорганизации являются вопросы, как получается, что система самопроизвольно переходит из состояния хаоса как наиболее вероятного с энергетической точки зрения в состояние порядка, менее вероятного и менее выгодного (как требующего более высокой энергии); как и благодаря чему происходит ее самоорганизация (самоупорядочение). Пока еще в современной науке на эти вопросы ответа нет.

    Следует отметить, что в научном мире и в научной литературе одни авторы используют термин «самоорганизация», а другие – «синергетика» (от греч. synergeia – сотрудничество, содружество). Фактические значения слов «самоорганизация» и «синергетика» существенно различаются, но их концептуальный смысл одинаков. Синергетика – область научных исследований коллективного поведения частей сложных систем, связанных с неустойчивостями и касающихся процессов самоорганизации. Синергетика – это теория самоорганизации систем различной природы, предметом которой они являются.

    Сама идея самоорганизации (синергетики) имела место еще в классической науке XVIII–XIX вв. Это космогоническая гипотеза Канта– Лапласа, теория эволюции Ч. Дарвина, теория поведения термодинамических систем Максвелла-Больцмана. Однако лишь только в 70-е гг. XX в., когда были накоплены большой теоретический материал и практический опыт, появилась возможность детального исследования открытых, неравновесных систем, анализа и описания механизмов и закономерностей их развития. Основные положения теории синергетики разработаны в трудах Г. Хакена, Г. Николиса, И. Пригожина в 70-х гг. XX в. Сам термин «синергетика» в научный обиход ввел Г. Хакен, немецкий физик, профессор Штутгартского университета. Большую роль в становлении теории самоорганизации сыграли работы наших соотечественников: В. Вернадского, Б. Белоусова, В. Жаботинского, А. Руденко, Ю. Климантовича, А. Колмогорова. Современное естествознание идет по пути теоретического моделирования сложнейших природных систем, способных к саморазвитию и самоорганизации.

    На идеях синергетики сформировалось современное миропонимание. Природа сквозь призму синергетики предстает как развивающаяся, нелинейная, открытая сложноорганизованная иерархическая система. Учитывая, что в природе и обществе существует огромное количество реальных систем, которые подчиняются законам синергетики, необходимо понять, что создание синергетической картины мира по сути своей является научной революцией, по своему статусу сравнимой с открытием строения атома, созданием генетики и кибернетики. Идеи синергетики стали основой для сближения традиционной европейской мысли об уровнях организации материи с идеями древней восточной философии о глобальной взаимосвязи и взаимозависимости всего сущего, о взаимодействии потенциального и реального.

    8.4. Основные свойства самоорганизующихся систем

    Открытые системы

    Основным понятием термодинамики является понятие энтропии как меры способности теплоты к превращению. Энтропия характеризует меру внутренней неупорядоченности системы. Она свойственна изолированным, то есть закрытым системам, находящимся в тепловом равновесии с окружающей средой. По отношению к закрытым системам были сформулированы и два закона (начала) термодинамики.

    Качественное отличие закрытой (замкнутой) системы от открытой в том, что в первой тоже может сохраняться неравновесная ситуация, однако до тех пор, покуда система за счет своих внутренних процессов не достигнет равновесия, при котором энтропия будет максимальной. Иное дело в открытых системах, которые обмениваются энергией с окружающей средой. Здесь за счет прихода энергии извне могут возникать диссипативные структуры с гораздо меньшей энтропией. Иначе говоря, система, самоорганизуясь в новом стационарном состоянии, уменьшает свою энтропию, она как бы «сбрасывает» ее избыток, возрастающий за счет внутренних процессов, в окружающую среду. В живых организмах это происходит за счет дыхания, экскреции. Открытая система как бы «питается» отрицательной энтропией (негэнтропией), выбрасывая наружу положительную. При этом возникают новые устойчивые неравновесные, но близкие к равновесию состояния. При таком неравновесии рассеивание энергии минимально и интенсивность роста энтропии оказывается меньше, чем в других близких состояниях. Здесь имеет место принцип производства минимума энтропии. Открытые системы – это необратимые системы. Для них весьма важен фактор времени.


    Принцип производства минимума энтропии

    В энергетических процессах открытых систем имеет место принцип Пригожина—Гленсдорфа – принцип производства минимума энтропии. Здесь под производством энтропии понимают отношение изменения энтропии dS к единице объема системы. Производством энтропии по этому принципу можно определить степень упорядоченности. Как известно, изменение энтропии выражается уравнением

    dS = dSi + dSe,

    где dS – полное изменение энтропии в системе; dSi – изменение энтропии, связанное с происходящими внутренними необратимыми процессами в системе; dSe – энтропия, перенесенная из внешней среды через границы системы.

    Из уравнения следует, что в изолированной системе энтропия dSe равна нулю, а внутренняя энтропия dSi > 0, так как dSe может компенсировать dSi, произведенную внутри системы, или быть больше ее. Из этого следует, что dSe < 0. Таким образом, энтропия в систему не поступает, а только может из нее выводиться. Условие dS =0 означает стационарное состояние, а dS < 0 – усложнение и рост системы. Изменение энтропии при этом соответствует соотношению dSe < dSi. Соотношение показывает, что энтропия, обусловливаемая необратимыми процессами внутри системы, выносится в окружающую среду.

    Свой принцип И. Пригожин и П. Гленсдорф выразили следующим образом: при неравновесных фазовых переходах, что соответствует точкам бифуркации, через которые проходит процесс самоорганизации, система движется по пути, соответствующему меньшему значению производства энтропии. Значит, чем меньше производство энтропии, тем более организованна система. В этом главный смысл процесса самоорганизации, то есть в создании определенных структур из хаоса неупорядоченного состояния. Открытые системы будто бы структурируют энергию окружающей их среды, причем упорядоченная часть энергии остается внутри системы, а неупорядоченная энергия сбрасывается системой обратно в окружающую среду.

    Таким образом, неравновесный термодинамический процесс создает условия для состояния, когда приток энергии извне не только компенсирует (гасит) рост энтропии, но и снижает ее количество.


    Нелинейные системы (нелинейность)

    Открытый характер большинства природных систем указывает на то, что в мире должны доминировать не равновесие и стабильность, а неустойчивость и неравновесность. Сама неравновесность порождает избирательность системы, ее специфические реакции на воздействия внешней среды. Тесная связь со средой отражается на функционировании систем; они как бы приспосабливаются к внешним условиям. Например, слабые воздействия среды могут оказывать большее влияние на эволюцию системы, чем более сильные, но не гармонирующие с тенденцией развития системы. Отсюда следует, что на нелинейные системы не распространяется принцип суперпозиции, то есть когда действие двух факторов на ситуацию вызывает эффект, который не имеет ничего общего с результатами отдельного действия каждого фактора. В нелинейных системах развитие идет по нелинейным законам, приводящим к многовариантности путей выбора и альтернатив выхода из состояния неустойчивости.

    В нелинейных системах процессы могут носить резко пороговый характер, когда при постепенном изменении внешних условий наблюдается скачкообразный их переход в другое качество. При этом старые структуры разрушаются, переходя к качественно новым структурам.

    Неравновесные, открытые нелинейные системы постоянно создают и поддерживают неоднородность в среде. Здесь между средой и системой могут создаваться отношения положительной обратной связи, которые еще более усиливают отклонения системы от равновесия. В результате такого взаимодействия открытой системы со средой могут наблюдаться самые неожиданные последствия.


    Неравновесная термодинамика

    Классическая термодинамика (закрытые системы) утверждает, что рост энтропии означает необратимость термодинамического процесса. Поэтому, если считать Вселенную закрытой системой, то с точки зрения второго закона термодинамики в ней постепенно произойдет выравнивание температур и установится полное равновесие, что соответствует «тепловой смерти» Вселенной. Энтропия будет расти и вместе с ней станет возрастать степень хаоса.

    Эти утверждения не согласуются с гипотезой возникновения Вселенной и со всем дальнейшим ходом глобального эволюционного процесса. Вывод о росте беспорядка в мире противоречит как химическому, так и биологическому развитию систем, да и всему процессу самоорганизации систем во Вселенной. Однако рост энтропии, согласно второму закону термодинамики, выделяет направление термодинамических процессов, что означает одномерность времени, или так называемую «стрелу времени».

    Неклассическая термодинамика изучает реальный мир открытых систем, проявляющийся в неживой и живой природе, с позиций синергетики. Это потребовало новых идей, понятий образов, а также пересмотра старых. В большей степени это относится к представлениям о порядке и хаосе. В синергетике хаос – это то, что отличается от порядка некоей структуры. Это не полное отсутствие структуры, а тоже структура, но определенного типа (как бы нарушенная структура). Подструктурой понимается совокупность устойчивых связей объекта (с другими объектами), обеспечивающая его целостность. Иначе говоря, структура – это взаиморасположение и связь составных частей чего-либо, то есть определенная организация объекта. Она характеризуется устойчивостью, четкостью внутренних связей, способностью к сопротивлению внешним факторам и изменениям. Структура – ключевое понятие в синергетике (самоорганизации). Открытые системы, как уже указывалось, постоянно обмениваются со средой энергией и веществом, находясь в относительно стабильном термодинамическом неравновесии. Биологической системе (живому организму) для устойчивого динамического состояния характерно минимальное производство энтропии, а для неустойчивого стационарного – максимальное неживое состояние. Вероятнее всего, что развитие живого осуществляется через неустойчивости, хотя в целом оно стремится к устойчивому состоянию на микроскопическом уровне за счет запасенной свободной энергии. При стремлении к устойчивому состоянию организм «сбрасывает» в окружающую среду ненужный избыток энтропии, тем самым постоянно поддерживая неравновесное термодинамическое состояние.


    Диссипативные структуры

    Диссипативная структура – одно из основных понятий теории структур И. Пригожина. Система в целом может быть неравновесной, но уже определенным образом несколько упорядоченной, организованной. Такие системы И. Пригожин назвал диссипативными структурами (от лат. dissipation – разгонять, рассеивать свободную энергию), в которых при значительных отклонениях от равновесия возникают упорядоченные состояния. В процессе образования этих структур энтропия возрастает, изменяются и другие термодинамические функции системы. Это свидетельствует о сохранении в целом ее хаотичности. Диссипация как процесс рассеяния энергии играет важную роль в образовании структур в открытых системах. В большинстве случаев диссипация реализуется в виде перехода избыточной энергии в тепло. Образование новых типов структур указывает на переход от хаоса и беспорядка к организации и порядку. Эти диссипативные динамические микроструктуры являются прообразами будущих состояний системы, так называемых фракталов (от лат. fractus – дробный, изрезанный). Большинство фракталов либо разрушается, полностью так и не сформировавшись (если они оказываются невыгодными с точки зрения фундаментальных законов природы), либо иногда остаются как отдельные архаичные остатки прошлого (например, древние обычаи народов, древние слова и т. д.). В точке бифуркации (точке ветвления) идет своеобразный естественный отбор фрактальных образований. «Выживает» образование, оказавшееся наиболее приспособленным к условиям окружающей среды.

    При благоприятных условиях новая структура (фрактал) «разрастается» и преобразуется постепенно в новую макроструктуру – аттрактор. При этом система переходит в новое качественное состояние. В этом новом состоянии система продолжает свое наступательное движение до следующей точки бифуркации, то есть до следующего неравновесного фазового перехода.

    В целом диссипация как процесс рассеивания энергии, затухания движения и информации играет весьма конструктивную роль в образовании новых структур в открытых системах. Для диссипативной системы невозможно предсказать конкретный путь развития, поскольку трудно предугадать начальные реальные условия ее состояния.


    Теория бифуркаций

    Открытая нелинейная самоорганизующаяся система всегда подвержена колебаниям. Именно в колебаниях система развивается и движется к относительно устойчивым структурам. Этому способствует постоянный обмен системы энергией и веществом с окружающей средой.

    Аномальные изменения в среде могут вывести систему из состояния динамического равновесия, и она станет неравновесной. Например, усиливающийся приток энергии в систему вызывает флуктуации и делает ее неравновесной и нерегулируемой. Организация системы все более расшатывается, изменяются свойства системы.

    Если параметры системы достигают определенных критических значений, то система переходит в состояние хаоса.

    Состояние максимальной хаотичности неравновесного процесса называют точкой бифуркации. Точки бифуркации – это точки равновесия как устойчивого, так и неустойчивого точки «выбора» дальнейшего пути развития системы.

    Для синергетики важны неустойчивые состояния. Появление неустойчивых состояний создает потенциальную возможность системе перейти в новое качественное состояние. Оно будет характеризоваться новыми параметрами системы и новым режимом ее функционирования.

    В состояниях выбора пути, то есть в точках бифуркаций большое значение имеют случайные флуктуации (колебания). От них зависит, по какому пути из множества возможных система будет выходить из состояния неустойчивости. Многие флуктуации рассеиваются, некоторые не оказывают влияния на дальнейший путь развития системы как очень слабые. Но при определенных, пороговых условиях за счет случайных внешних воздействий эти флуктуации могут усиливаться и действовать в резонанс, подталкивая систему к выбору определенного пути развития (определенной траектории).

    В точках бифуркации самоорганизующаяся система, стоя перед выбором путей развития, образует множество диссипативных динамических микроструктур, как бы «эмбрионов» будущих состояний системы – фракталов. Набор таких состояний в точках бифуркаций перед выбором дальнейшего пути и образует детерминированный, или динамический, хаос. Однако большинство этих будущих прообразов системы – фрактальных образований гибнет в конкурентной борьбе. В результате выживает та микроструктура, которая является наиболее приспособленной к внешним условиям. Весь этот процесс носит случайный и неопределенный характер. Выжившая в конкурентной борьбе фрактальных образований формирующаяся макроструктура получила название аттрактора (см. выше). В результате этого система переходит в новое качественно более высокое организационное состояние. Направление движения этого аттрактора начинает подчиняться необходимости. Система теперь ведет себя как жестко детерминированная.

    Таким образом, аттрактор представляет собой отрезок эволюционного пути от точки бифуркации до определенного финала (им может быть другая точка бифуркации). Обычные аттракторы характеризуются устойчивостью динамической системы. Аттрактор как бы притягивает к себе подобно магниту множество различных траекторий системы, определяемых разными начальными значениями параметров. Здесь очень важную роль играют кооперативные, совместные процессы, которые основываются на когерентном, то есть согласованном, взаимодействии всех элементов зарождающейся устойчивой структуры.

    Аттрактор можно сравнить с конусом или воронкой, которые своей широкой частью обращены к зоне ветвления, то есть к точке бифуркации, а узкой частью – к конечному результату, то есть к упорядоченной структуре. Если система попадает в сферу действия определенного аттрактора, то она эволюционирует именно к нему. Разными путями эволюция выходит на одни и те же аттракторы. В результате этого формируются параметры порядка, то есть устойчивого динамического состояния. В этом состоянии система может находиться до тех пор, пока в силу каких-либо причин, а также случайных флуктуаций она вновь не придет в неустойчивое положение. Эти причины связаны с дисгармонией, несоответствием внутреннего состояния открытой системы внешним условиям окружающей ее среды. Вследствие этого система теряет свою устойчивость, возвращаясь к хаотическому состоянию, и у нее вновь появляется множество новых путей развития. Для наглядности бифуркационный процесс эволюции системы можно представить в виде бифуркационного дерева (рис. 8.1).

    По подобному принципу в виде эволюционного дерева можно представить развитие биологических видов или антропогенеза.

    В точках бифуркации даже маленькое случайное изменение может привести к серьезному возмущению системы. Поэтому самоорганизующимся системам нельзя грубо навязывать определенные пути развития. Здесь необходимо исследовать и найти пути совместной жизни природы и человека, стараться глубоко познать природу их совместной эволюции, коэволюции.

    Основы теории бифуркаций были заложены в начале XX в. французским математиком А. Пуанкаре и русским математиком А. Ляпуновым. В дальнейшем эта теория получила развитие в школе русского физика А. Андронова. Теория бифуркаций в настоящее время находит широкое применение в междисциплинарных науках, а также в физике, химии, биологии.



    Рис. 8.1. Бифуркационный характер эволюции системы (X, Z – параметры системы, t – время, А и В – точки бифуркации)

    Эволюционное движение системы обязательно связано с необходимостью перестройки адаптивных механизмов на качественно новый, более высокий уровень. Если система благодаря внутренней перестройке смогла (успела) адаптироваться к новым условиям, то она приобретает новое, организационно более высокое, устойчивое состояние; если нет, то она разрушается и гибнет. В адаптированном устойчивом положении система может находиться до следующей случайной флуктуации, после которой ситуация повторяется. По этой схеме идет эволюционное развитие всех систем на всех структурных уровнях, хотя скорость этого процесса различна. Так, химическая эволюция Вселенной продолжается от времени Большого взрыва до наших дней – это около 20 млрд лет, эволюция живой материи – 3,7 млрд лет, эволюция человека – около 2 млн лет, а человеческого общества – порядка нескольких десятков тысяч лет.

    С точки зрения синергетической самоорганизации жизнь зародилась в диапазоне сложных систем. В этом случае следует считать жизнь совокупностью («сборкой») физико-химических элементов.

    С позиций синергетики закономерным представляется и эволюция мира живого, которая по линии развития древесных млекопитающих привела к появлению человека как биологического вида, а также человеческого общества как социальной системы.


    Бифуркационное дерево как модель эволюции природы, человека, общества

    Синергетическую модель эволюции неживой, живой природы и человеческого общества с точки зрения бифуркационных изменений можно представить в виде глобального процесса самоорганизации материи во Вселенной. Этот процесс идет на трех уровнях.

    1. Первый уровень представлен самоорганизацией и эволюцией неживой (косной) материи. Это химическая эволюция, идущая по направлению: элементарные частицы-атомы-молекулы, а также структурная эволюция, идущая по направлению: газопылевые туманности-звездные системы-галактики-метагалактики-Вселенная.

    Косное вещество самоорганизовывалось посредством отражения косной материи и обмена физической информацией, носителем которой являются различные фундаментальные взаимодействия. Этот этап (этап предбиологической эволюции) длится от момента Большого взрыва по настоящее время.

    2. Второй уровень представляет собой самоорганизацию и эволюцию живого вещества. Можно предположить, что в какой-то момент эволюции косной материи во Вселенной в какой-то определенной точке (в данном случае на Земле, а может, еще где-то) в результате диссипации случайно создались условия для группировки органических молекул в комплексы (системы), у которых со временем через ряд бифуркаций появилась способность к саморегуляции и самовоспроизведению. В результате обмена веществом и энергией с изменяющейся окружающей средой шло постепенное последовательное усложнение органических систем в течение многих миллиардов лет, что привело к возникновению высокоорганизованной формы материи – живому веществу, то есть растений и животных.

    Постоянные сложные взаимодействия живого с косной материей в виде потоков вещества, энергии и информации поддерживали динамическую устойчивость живых систем на разных уровнях их организации и сложности. Живые системы, чтобы выжить, обладали более сложной формой отражения опережающего характера, нежели косные. У живых систем выработались особые формы приема, накопления и передачи информации. Самой высокоорганизованной формой живого оказался человек, обладающий разумом, способный реально анализировать и познавать окружающий мир, искать и находить свое место в нем. Весь этот процесс самоорганизации и эволюции живого вещества на планете Земля продолжается вот уже более 3,5 млрд лет.

    3. Третий уровень – организация человеческого общества, то есть социальный. На каком-то определенном отрезке длинного эволюционного пути от высших животных до человека возникают условия для появления сообщества, основанные на разуме и коллективной деятельности. В этих сообществах в процессе самоорганизации в течение миллионов лет происходила как социальная, так и психологическая эволюция человека. В конце концов человек стал вершиной пирамиды всего живого на Земле. Уровень познания природы человеком резко возрос, усложнились коммуникативные отношения и связи. Человек окружил себя мощной техносферой. Высокая техническая и технологическая оснащенность позволяет человеку изменять облик планеты, создавать искусственную среду обитания в любой точке планеты, а также в околоземном пространстве. Человек стал серьезно изменять характер энергетических вещественных и информационных потоков в биосфере, влиять на направленность биогеохимических циклов.

    В связи с таким ходом развития человеческого общества встает глобальный вопрос, куда пойдет эволюционная ветвь его дальнейшего развития на Земле, если рассматривать этот процесс через призму бифуркационных ветвлений.

    В настоящее время в результате исторического развития человеческого общества возникли проблемы, связанные с антропогенной деятельностью человека: это взаимоотношения человека и природы, людей между собой, отдельной личности и человеческого общества. Эти проблемы порождены тем, что современная цивилизация в центр своего бытия поставила покорение природы, потребительское отношение к ней. Она смотрит на мир вообще и на конкретные его объекты в частности только с точки зрения их полезности и практического использования, создав при этом массу глобальных проблем. Они привели человечество к так называемому цивилизованному кризису, где доминирует парадигма личной выгоды, соперничества и борьбы. На возможность такого кризиса указывал еще В. Вернадский. Ускорение процессов развития человечества сопровождается понижением уровня его устойчивости, стабильности, возникновением новых аттракторов. Эволюция на Земле приобрела планетарный характер, в нее вовлекаются природные и социальные системы. Советский академик, работающий в области прикладной математики и физики, Н. Моисеев, выдвигает человечеству два требования (императива) – экологического и нравственного порядка. Экологический императив заключается в том, что нельзя ставить экономические интересы человечества выше экологических. Нравственный императив призывает к обновлению нравственности в соответствии с необходимостью коэволюции природных и общественных систем. Русский философ Н. Бердяев в первой половине XX в., анализируя будущее человечества, поставил ему диагноз:

    Индивидуализм, атомизация общества, безудержная похоть жизни, неограниченный рост народонаселения и неограниченный рост потребностей, упадок веры, ослабление духовной жизни – все это привело к созданию индустриально-капиталистической системы, которая изменила весь характер человеческой жизни, весь стиль ее, оторвав жизнь человеческую от ритма природы.

    Сегодня переживает кризис сама исходная парадигма социума, направляющая все свои силы и средства на хищническое освоение природы, не учитывая ее возможностей. В кризисе и самосознание человека, и его культура. Этот кризис не позволяет ему справиться со все углубляющимися глобальными проблемами. Природа может сбросить «непослушное ей» человечество с лица Земли.

    Сейчас необходимо осознать, что XXI в. может стать концом человеческой цивилизации, социальное время может закончиться. Поэтому борьба за выживание есть борьба и за время, которого может не хватить, чтобы осознать реальные условия существующего мира и приспособиться к ним.

    Радикальным действием человека по преодолению кризиса в системе «общество-природа», по мнению группы ученых, разрабатывающих современное учение о ноосфере (Д. Беккер, Н. Моисеев, А. Урсул и др.), должно быть формирование личности нового типа. Человек третьего тысячелетия должен обладать высокой экологической культурой и планетарным сознанием. Именно экологическая культура определяет характер и качественный уровень отношений между человеком и социоприродной средой. Экологическая культура проявляется в системе духовных ценностей, а также во всех видах и результатах человеческой деятельности в отношении природы. Глубокое осознание общих закономерностей развития мира, всех взаимосвязей между природой, человеческим обществом и культурой способствует правильному определению человеком своего места в системе мироздания, а также корректному образу мышления и соответствующему поведению в социоприродной среде.

    8.5. Представление о жизни в современном естествознании

    Ответить на вопрос, что такое жизнь, дать ей точное, исчерпывающее определение современная наука не в состоянии. Каждый ученый дает свое определение жизни. Однако универсального критерия живого нет, как нет и особых признаков, которые бы позволяли безоговорочно отделить живое от неживого.

    Живое имеет много общего с неживым. Так, организмы и предметы состоят из атомов и молекул, в основе которых одни и те же химические элементы, функционирование которых определяется законами физики и химии и т. д. Однако организмы (живое) обладают своими специфическими признаками, которых нет у объектов неживой природы.

    Признание того, что жизнь должна определяться законами физики и химии, все же не предоставляет возможности понять ее сущность как особого явления во Вселенной. Это, по-видимому, и наводит человека на мысль о духовном начале ее сути.

    Исторически все религиозные учения и верования указывали на присутствие в живых организмах, особенно в человеке, духовного начала – бессмертной души, которая является якобы атрибутом и критерием всего живого, главным его признаком. На это указывают работы античных философов: Платона, Аристотеля (его энтелехия как духовное начало), а в более поздний период – Гегеля (мировой разум) и многих других философов.

    В биологии даже сформировалась концепция так называемого витализма (от лат. vitalis – жизненный), указывающая на присутствие в живых организмах особого нематериального начала, «жизненной силы», направляющей жизненные процессы в организме и управляющей им. В последнее время сформировались понятия энергоинформационного поля и энергоинформационного обмена.

    Все перечисленное является попытками объяснить живое нематериальными представлениями. Так или иначе, критерием живого признается душа, которая управляет всеми жизненными материальными процессами в организмах, не нарушая при этом фундаментальных законов природы. Однако с позиций современной научной мысли с этим согласиться весьма трудно. Все-таки жизнь материальна по своей сути. Жизнь проявляется в виде движения; но движение материальных носителей жизни характеризуется особой специфической формой.


    Отличительные признаки живого

    К важнейшим свойствам живых систем, отличающих их от неживой (косной) природы, можно отнести следующее:

    1. Живые организмы обмениваются с окружающей средой энергией, веществом и информацией. Они способны ассимилировать получение извне вещества, перестраивать их в ткани своего тела.

    2. Живое отличается сложным строением и системной организацией, которые у них намного выше, чем у неживых объектов. Живым системам свойственен более высокий уровень асимметрии, они характеризуются высокой самоупорядоченностью в пространстве и времени.

    3. Живые организмы способны создавать порядок из хаоса уже на молекулярном уровне и тем самым противодействовать росту энтропии. Они извлекают структурированную полезную для организма отрицательную энтропию из окружающей среды, обеспечивая термодинамическую неравновесность своих систем. При этом избыток положительной, неструктурированной энтропии «сбрасывается» обратно в окружающую среду. Живому свойственна энергетическая экономичность и высокая эффективность использования энергии.

    4. Живое способно реагировать на внешние раздражители. Ему свойственны активность и движение во взаимодействии с окружающей средой.

    5. Живому свойственны самоорганизация, постоянное развитие, изменение и усложнение. Если в самоорганизации неживых структур молекулы просты, а механизм реакций сложен, то в живых системах, наоборот, молекулы очень сложны, а механизмы просты. В метаболических функциях важную роль играет обратная связь (петли обратной связи), образующаяся при автокаталитических реакциях. Автокатализ, кросскатализ и автоингибиция характерны только живым системам. Для создания и развития новых структур, новых органов необходима положительная обратная связь, расшатывающая систему, а для устойчивого состояния – отрицательная обратная связь. Таким образом, живой организм способен не только к саморегуляции, но и к самосохранению, устойчивости своего существования. Реакция живого организма на воздействия среды носит опережающий характер.

    6. Живые организмы способны размножаться, то есть воспроизводить самих себя. Это самовоспроизводство идет в избыточных количествах, что способствует естественному отбору.

    7. Наследственность живого определяется генетическим аппаратом, а изменчивость – условиями окружающей среды и реакцией на них организмов. У живых организмов есть прошлое. Наследственная информация, заложенная в генах организма, необходима ему для существования, развития и размножения. Она передается по наследству его потомкам, определяя направление развития организма в окружающей среде. Организм гибко реагирует на изменяющую внешнюю среду, откликается новыми свойствами, которые, передаваясь потомкам, обеспечивают эволюцию их развития.

    8. Высшим формам живой материи свойствен разум, это позволяет материи изучать, анализировать и познавать самое себя.

    Все перечисленные признаки, свойственные живому, могут встречаться отдельными фрагментами и в неживой природе. Но во всей своей совокупности они присущи только живому, что и отличает живую материю от неживой.


    Определения жизни

    Как уже указывалось, жизнь очень сложна, многообразна, многокомпонентна и многофункциональна. Она не может быть определена по какому-то одному критерию, наиболее существенному признаку. Поэтому на сегодняшний день наука не имеет достаточно четкого определения жизни. Разноплановость понимания жизни объясняется многогранностью подходов ученых к ее определению.

    Сама идея жизни, совокупность ее существенных свойств, ее сущность витает в умах ученых вот уже многие тысячелетия. И только в последние сто лет стала складываться определенная парадигма, в диапазоне которой усиленно ведутся поиски общей теории жизни и ее сущности.

    Рассмотрим некоторые определения жизни, данные прославленными учеными и мыслителями XIX–XX вв.

    Так, с точки зрения материалистической философии Ф. Энгельс (1820–1895) дает следующее определение жизни как особой формы движения материи: «Жизнь – это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка».

    Исходя из этого определения, можно сказать, что основа жизни есть обмен веществ. Это важный, но не единственный критерий.

    Советский биофизик М. Волькенштейн (1912–1992) дает определение жизни с точки зрения системно-синергетического подхода: «Жизнь – это форма существования макроскопических гетерогенных открытых систем, далеких от равновесия, способных к самоорганизации, саморегуляции и самовоспроизведению». Это определение является более полным, нежели определение Ф. Энгельса, поскольку отражает принципиальное отличие живой материи от неживой.

    Автор наиболее популярной гипотезы о происхождении жизни на Земле советский биохимик А. Опарин (1894–1980) дает свое определение жизни: «Жизнь – это непрерывный процесс внутреннего движения, синтеза и распада, обмена энергией с окружающей средой, направленный на самосохранение и самовоспроизведение в передаче устойчивых признаков в меняющихся условиях внешней среды».

    Австрийский физик Э. Шредингер (1887–1961) дает определение жизни с точки зрения своей науки: «Жизнь – это упорядоченное и закономерное поведение материи, основанное не только на одной тенденции переходить от упорядоченности к неупорядоченности, но и частично на существовании упорядоченности, которая поддерживается все время».

    Русский математик А. Ляпунов (1857–1918), рассматривающий жизнь с точки зрения информации, писал: «Жизнь – это высокоупорядоченное состояние вещества, использующее для выработки сохраняющихся реакций информацию, кодируемую состояниями отдельных молекул».

    Австрийский физик Л. Больцман (1844–1906) сделал первую попытку дать определение жизни с физических позиций. Он писал, что «всеобщая борьба за существование – это борьба за отрицательную энтропию, становящуюся доступной при переходе от пылающего Солнца к холодной Земле».

    Русский геохимик В. Вернадский (1863–1945) отметил около двадцати различий между живым и неживым. Основываясь на них, он дал следующее обобщение: «Жизнь есть космическое явление, в чем-то резко отличное от косной материи».

    8.6. Структурные уровни организации живой материи

    Биологический уровень организации материи представлен живой природой во всем ее многообразии. Изучением живой природы занимается биология. Спецификой объекта этой науки о жизни как определяющей многие особенности биологического познания, его стратегию, процессы дифференциации и интеграции является попытка общего понимания «конечной цели» – сущности жизни и путей ее достижения.

    Кроме необычайного разнообразия биологическое познание сталкивается с удивительной сложностью внешнего и внутреннего строения живых форм материи. Вместе с тем населяющие Землю живые организмы не представляют собой неорганизованную, хаотическую систему, не имеющую вполне определенных, закономерных связей и взаимозависимостей между составляющими ее отдельными компонентами и их группами. Напротив, такие связи и взаимозависимости в живой природе встречаются повсеместно и давно зафиксированы наукой. Живые организмы группируются в соответствии с особенностями своего внутреннего и внешнего строения, а также по другим признакам и свойствам в ряд систематических единиц, имеющих общее происхождение. Все без исключения живые организмы на Земле обладают множеством специфических признаков, отличающих их от неживой материи. И это не только морфологические внешние признаки, но и все то, что характеризует жизнь как таковую, независимо от конкретных форм ее существования. Это выражается в особом типе структурной организованности строения и функций живой материи, подчиненной жесткой иерархии, начиная с ее молекулярно-генетического уровня и кончая биосферой в целом.


    Основные особенности живых систем

    Жизнь на Земле чрезвычайно разнообразна. С начала появления жизни на Земле, то есть с течением биологического времени (3,5–3,7 млрд лет) эволюция живых организмов насчитывает огромное количество видов. В настоящее время, по разным оценкам, на Земле существует около 500 тыс. видов растений, из которых 300 тыс. высших. Царство животного мира более разнообразно, чем царство растений. На сегодняшний день описано около 1,5 млн видов представителей животного мира, но очевидно, что это далеко не исчерпывающие сведения.

    Все разнообразие видов на Земле классифицируют согласно категориям систематики: царство-тип-подтип-класс-отряд-семейство-род-вид-подвид-разновидность. Наиболее широкая и общая таксономическая единица – это царство. Современная биология выделяет пять царств. Это прокариоты, простейшие, грибы, растения, животные. Все эти таксономические единицы являются результатом исторического процесса в мире живой материи, его эволюции (табл. 8.1).

    Таблица 8.1

    Обзор царств организмов и некоторых важных подгрупп (по 3. Брему и И. Мейнке, 1999)




    Жизнь есть качественно новая форма организации материи, основное свойство которой состоит в способности усваивать энергию Солнца за счет процесса фотосинтеза и воспроизводить из неживого живое. Современная биологическая картина мира основывается на том, что мир живого – это колоссальная система высокоорганизованных систем.

    Специфика жизненных процессов тесно связана с особым типом их субстрата – чрезвычайно сложными органическими соединениями: белками и нуклеиновыми кислотами. Любой живой организм представляет собой открытую органически целостную систему, в которой происходят сложные взаимодействия и имеют место взаимозависимости отдельных структурных и функциональных компонентов. Последние определяют автономный и самопроизводный характер морфогенетических процессов живых систем и их способность к самоорганизации. Это обеспечивает самосохранение живых систем, их адаптацию к внешней среде. Взаимодействие с внешней средой осуществляется через обменные процессы, в ходе которых происходит сложный синтез и деструкция поступающих в организм веществ. Молекулярная биология нашего времени выявила поразительное единство живой материи на всех уровнях ее развития – от простейших микроорганизмов до человека. Это единство представлено двумя основными классами молекул – нуклеиновыми кислотами и белками. Именно их взаимодействие и составляет основу жизни.

    Почти все живые организмы состоят из клеток (кроме вирусов и фагов). По этому признаку организмы делятся на доклеточные и клеточные.

    Доклеточные формы жизни – вирусы – занимают промежуточное положение между живым и неживым. Они сочетают в себе свойства и живого, и неживого. Вирусы существуют в двух формах – в форме вариона (покоящийся, внеклеточный вирус, который в «спячке» ведет себя как неживое вещество) и в форме репродуцирующегося внутриклеточного вируса, который ведет себя как живое вещество. Вирусы были открыты в 1982 г. русским микробиологом Д. И. Ивановским. Вирусы состоят из белковых молекул и нуклеиновых кислот и не имеют собственного обмена веществ. Они существенно отличаются от остальных форм жизни. Иногда их даже выделяют в отдельное царство живых организмов – Vira.

    Все клеточные живые организмы делятся на одноклеточные и многоклеточные. Одноклеточные организмы (бактерии, простейшие, некоторые водоросли и грибы) состоят лишь из одной клетки. Одноклеточные в свою очередь делятся на прокариотов (клетка которых лишена ядра) и эукариотов (клетка которых имеет ядро). Многоклеточные организмы состоят из множества клеток. Так, например, организм человека состоит из 1014 клеток. Клетки многоклеточного организма выполняют различные функции – как специализированные, так и общеклеточные. Многоклеточный живой организм обладает функциями и свойствами, которые не сводятся к функциям отдельных клеток и даже их суммы.

    Современная наука о клетке – цитология – представляет клетку как чрезвычайно сложноорганизованную биологическую систему. Клетка состоит из оболочки (мембраны), наполненной протоплазмой. В протоплазме находятся органоиды, выполняющие определенные специализированные функции (обмен веществ, дыхание, синтез белка и т. д.), и ядро (или нуклеотид) с генетическим аппаратом.

    Элементы и компоненты биологических систем выражают дискретную составляющую живого. Живые объекты в общей системе живых организмов в природе относительно обособлены один от другого (особи, популяции, виды). Каждая особь одноклеточного или многоклеточного организма состоит из клеток. Клетка состоит из органелл. Органеллы в свою очередь представлены отдельными высокомолекулярными органическими веществами. Вследствие такой чрезвычайной сложности живых систем в природе не может быть двух одинаковых особей, популяций или видов, хотя в целом они могут быть очень близкими.

    Биологические системы отличаются высоким уровнем целостности, основанной на структурах и типах связей между ее элементами. Это открытые системы, которым свойствен обмен веществом и энергией с окружающей средой. В процессе органической эволюции биологическим системам свойственны усложнение, снижение энтропии и рост самоорганизации.

    Характерными особенностями живых систем кроме обмена веществом и энергией являются саморегуляция, раздражимость, синтез органических веществ, рост, размножение, адаптация к окружающей среде и передача наследственных признаков. В живых системах саморегуляция осуществляется на уровне интенсивного обмена веществом, энергией и информацией с окружающей природной средой.

    Фундаментальным свойством живого является опережающее возбуждение, которое лежит в основе формирования адаптивных признаков. Вследствие этого многие действия живых организмов имеют опережающий характер по отношению к окружающей природной среде. Это так называемое опережающее отражение. Живое заранее готовится, например, к смене времен года. Так, рыба средних широт уже с осени накапливает жир, готовясь к зиме; деревья задолго сбрасывают листву, многолетние растения для лучшей перезимовки накапливают в клетках углеводы. Проявление опережения может быть не только на биохимическом уровне, но и на социальном, что выражается в различного рода планированиях.

    Уникальной особенностью живого является его самовоспроизведение, которое осуществляется на основе матричного принципа синтеза макромолекул. ДНК, хромосомы и гены как главные управляющие системы живых организмов обладают высокой стабильностью к идентичному самовоспроизведению, что обеспечивает передачу наследственных признаков ряду поколений. В изменяющихся условиях среды достаточно стабильное генное управление претерпевает некоторые структурные изменения. Эти изменения, мутации в выжившем и изменившемся в соответствии с условиями среды организме передаются по наследству по матричному принципу. Это приводит к разнообразию живой материи.

    Концепция системно-структурных уровней организации живой материи позволяет не только представить многообразие живых организмов по уровням их сложности и специфики функционирования, но и расположить их в иерархическом порядке, где каждый предыдущий уровень входит в последующий, образуя единое целое живой системы. Критерием выделения тех или иных уровней являются специфичные дискретные структуры, а также фундаментальные биологические взаимодействия.

    Существуют различные градации структурных уровней организации живой материи, которые довольно многочисленны. Среди них: самоорганизующиеся комплексы, биомакромолекулы, клетки, многоклеточные организмы. Имеют место и такие классификации: 1) молекулярно-генетический, клеточный, организменный, популяционно-видовой, биогеоценозный; 2) молекулярный, клеточный, тканевый, органный, организменный (онтогенетический), популяционно-видовой, биогеоценотический, биосферный. Определены и некоторые другие уровни организации живой материи. Однако классическими уровнями в современной биологии являются следующие: молекулярно-генетический, клеточный, онтогенетический, популяционно-видовой, био-геоценотический (биосферный).


    Молекулярно-генетический уровень биологических структур

    Молекулярно-генетический уровень является тем уровнем организации живой материи, на котором совершался переход от атомно-молекулярного уровня неживой материи к макромолекулам живой. Знание этого уровня организации живого необходимо для понимания жизненных явлений, происходящих на всех других уровнях организации жизни. Это уровень функционирования биополимеров, таких как белки, нуклеиновые кислоты, полисахариды и другие важнейшие органические соединения, положившие начало основным процессам жизнедеятельности. На этом уровне организации живой материи элементарными структурными единицами являются гены. Вся наследственная информация у живых организмов заложена в молекулах ДНК (дезоксирибонуклеиновые кислоты). Реализация этой информации связана с участием молекул РНК (рибонуклеиновые кислоты). С молекулярными структурами связаны хранение, изменение и реализация наследственной информации, то есть передача ее из поколения в поколение. Поэтому этот уровень и называют молекулярно-генетическим. РНК и ДНК были выделены из ядер клеток и поэтому получили название нуклеиновых, то есть ядерных, кислот.

    В этих кислотах имеются углеводные компоненты: Д-дезоксирибоза в ДНК и Д-рибоза в РНК, отсюда и название этих нуклеиновых кислот.

    Роль нуклеиновых кислот в хранении и передаче наследственности, а также участие их в синтезе белка и обмене веществ были окончательно выяснены лишь в середине XX столетия. В 1953 г. американскими учеными Д. Уотсоном и Ф. Криком была предложена и экспериментально подтверждена гипотеза о структуре молекулы ДНК как материального носителя генетической информации. В 1960-е гг. французскими учеными Ж. Моно и Ф. Жакобом была решена одна из главных проблем генной активности, которая объясняла фундаментальную особенность функционирования живой природы на молекулярном уровне.

    На молекулярно-генетическом уровне важнейшей задачей современной биологии является исследование механизмов передачи генной информации, наследственности, а также изменчивости.

    Одним из важнейших механизмов изменчивости на молекулярном уровне является механизм мутации генов, то есть их непосредственное преобразование под воздействием внешних факторов, вызывающих мутации (появление мутагенов), это – вирусы, радиация, токсические химические соединения.

    Механизмом изменчивости может быть и рекомбинация генов, то есть создание новых их комбинаций. Этот процесс свойствен половому размножению у высших организмов. При нем не происходит изменения общего объема генетической информации. Этот механизм называется классическим.

    В других так называемых неклассических случаях рекомбинация может сопровождаться увеличением информации генома клетки. В этом случае фрагменты хромосомы клетки-донора включаются в хромосому принимающей клетки. Они могут оставаться в скрытом, латентном, состоянии некоторое время, а также соединяться с принимающей клеткой (клеткой-реципиентом), когда под действием внешних факторов они становятся активными.


    Клеточный уровень

    Любой живой организм состоит из клеток. Клетка является элементарной самостоятельной единицей не только строения, но и функционирования живого организма. Она представляет собой мельчайшую элементарную живую систему и является основой жизнедеятельности и воспроизводства всех живых организмов.

    В клетке как микроносителе жизни заключена такая генетическая информация, которая вполне достаточна для производства всего организма. На клеточном уровне идут процессы обмена веществ, процессы передачи и переработки информации и превращения веществ и энергии. Поэтому элементарные явления на клеточном уровне создают энергетическую и вещественную основу жизни на других уровнях живой материи.

    Исследование клетки стало возможным благодаря изобретению микроскопа в XVII в. Впервые клетка была описана английским естествоиспытателем Р. Гуком.

    Клетки всех живых организмов сходны по своему строению и составу вещества. Всеми весьма многообразными и сложными процессами в клетке управляет особая структура – ядро. Ядро хранит и воспроизводит генетическую информацию, координирует и регулирует процессы обмена веществ в клетке, а также ее воспроизводство путем деления.

    В начале XIX столетия было описано клеточное ядро, что послужило значительным толчком в развитии теории клетки. Клеточная теория явилась важнейшим событием в биологии XIX в. Именно она стала фундаментом для развития физиологии, эмбриологии, теории эволюции. Это явилось огромным шагом вперед в понимании индивидуального развития живых организмов.

    Клетки отличаются большим разнообразием форм, размеров и функций. Их подразделяют на две группы: клетки, не содержащие ядра, то есть безъядерные клетки, представленные одноклеточными организмами – прокариотами, и клетки, имеющие ядро, то есть ядерные клетки, представляющие одноклеточные организмы – эукариоты, а также все многообразие многоклеточных организмов.

    По типу питания клетки подразделяются на два вида: автотрофные, которые не нуждаются в органической пище и сами производят органические питательные вещества, используя энергию солнца, углерод, воду и минеральные вещества за счет процесса фотосинтеза (растения); и гетеротрофные, использующие для своего питания готовое органическое вещество.


    Онтогенетический (организменный) уровень

    Онтогенетический уровень организации живой материи включает в себя как одноклеточные, так и многоклеточные организмы. Это более высокий и сложный комплексный уровень организации живого на Земле. Сам термин «онтогенез» означает индивидуальное развитие организмов, охватывающее все изменения от зарождения до смерти. Термин был впервые введен в биологию немецким биологом Э. Геккелем в 1866 г, который в сформулированном им биологическом законе указывает на то, что каждый отдельный организм в своем индивидуальном развитии повторяет в сокращенной форме историю своего вида.

    Основной жизненной единицей на этом уровне является особь, а элементарным явлением – онтогенез. На этом уровне развития живого идет декодирование, а также реализация генетической и наследственной информации, завершающиеся становлением дефинитивной организации. Идет проявление фенотипических признаков, служащих материалом для естественного отбора. На этом уровне создаются особенности как структурные, изучаемые микро– и макроморфологией, так и функциональные, которые составляют предмет изучения физиологии, биофизики и биохимии.

    Особенно важное значение для изучения функционирования и развития многоклеточных организмов имеет физиология. Она изучает механизмы действия различных функций живого организма, их связь, регуляцию и адаптацию к внешней среде, а также эволюционное развитие особи. Многоклеточные организмы состоят из тканей и органов.

    Ткани представляют собой совокупность клеток и межклеточного вещества. В растениях это образовательная, основная, защитная и проводящая ткань. Ткани у животных – это эпителиальная, мышечная, соединительная и нервная.

    Органы – это сравнительно крупные функциональные единицы, объединяющие ткани в определенные физиологические комплексы. Органы в свою очередь входят в состав более крупных единиц, систем организма. Это пищеварительная, нервная, сердечно-сосудистая, дыхательная системы и т. д.


    Популяционно-видовой уровень

    Это уже надорганизменный уровень, единицей которого является популяция. Именно популяции являются реальными системами, посредством которых существуют виды живых организмов. На этом уровне изменения, возникающие на первых трех уровнях, приводят к существенным эволюционным преобразованиям (микроэволюциям) за счет выработки новых адаптивных норм (признаков) и связанных с ними процессов видообразования.

    Популяции являются генетически открытыми системами. Хотя они обладают некоторой относительной изоляцией, все же периодически они имеют возможность обмена генетической информацией. Именно популяции выступают в качестве элементарных единиц эволюции. Изменения их генофонда приводят к появлению новых видов. Популяциям свойственна активная и пассивная подвижность, что определяет постоянное перемещение особей. Популяции имеют способность к самостоятельному существованию, однако им свойственно и объединение. Объединяясь на определенной территории, они образуют биоценозы.


    Биосферный (биогеоценотический) уровень

    Как правило, биоценозы состоят из нескольких популяций и являются компонентами уже более сложной биологической системы – биогеоценоза. Биогеоценоз представляет собой единство живого (биоценоза) и неживого, то есть определенного участка земной поверхности (биотопа). Биогеоценоз – это подвижная, открытая, развивающаяся система. Она постоянно обменивается веществом и энергией с другими биогеоценозами и с окружающим пространством.

    Биогеоценоз как целостная саморегулирующаяся система состоит из нескольких подсистем. Это первичные системы – продуценты. Они перерабатывают неживую материю, превращая ее в органическое вещество своих тел (растения, водоросли, некоторые микроорганизмы). Вторичные системы представлены консументами, которые получают энергию за счет органического вещества, синтезированного продуцентами (все травоядные животные), далее идут консументы второго порядка – хищники. Живые организмы после своего отмирания (органический детрит) перерабатываются редуцентами, то есть микроорганизмами, разлагающими остатки органической материи до минеральных веществ. Эти вещества, попадая в почву, вновь используются растениями, и круговорот веществ замыкается. Следовательно, в биогеоценозе происходит круговорот веществ, в котором живые организмы являются главной движущей силой.

    Устойчивость и саморегуляция биогеоценозов увеличивается пропорционально разнообразию составляющих его элементов. Выпадение одного или нескольких компонентов биогеоценоза может привести к необратимому нарушению равновесия и к его гибели. Это указывает на тесную взаимосвязь организмов всех уровней в биогеоценозе посредством пищевых цепей и пищевых сетей. В связи с этим высокоорганизованные организмы не могут существовать без более простых.

    Совокупность всех биогеоценозов планеты образует биосферу. Биосферный уровень организации живого – это наивысший уровень, охватывающий все явления жизни на Земле. Живое вещество планеты (совокупность всех живых организмов на планете, в том числе и человека) и преобразованная им окружающая среда – это и есть биосфера. Следовательно, биосферный уровень объединяет все другие уровни организации жизни на Земле. На этом уровне протекают вещественно-энергетические круговороты, вызванные жизнедеятельностью организмов и образующие в сумме большой биосферный круговорот.

    Учение о биосфере разработал В. И. Вернадский. Он доказал тесную связь органического мира на планете как единого нераздельного целого с геологическими процессами. Благодаря биогенной миграции атомов живое вещество выполняет свои геохимические функции и является мощной геологической силой.

    8.7. Гипотезы происхождения жизни

    Происхождение жизни на Земле является одной из важнейших проблем естествознания. Еще в глубокой древности люди задавали себе вопросы, откуда произошла живая природа, как появилась жизнь на Земле, где грань перехода от неживого к жизни и пр. На протяжении десятков веков менялись взгляды на проблему жизни, высказывались разные идеи, гипотезы и концепции. Этот вопрос волнует человечество и по настоящее время.

    Некоторые идеи и гипотезы о происхождении жизни получили широкое распространение в разные периоды истории развития естествознания. В настоящее время существует пять гипотез возникновения жизни:

    1. Креационизм – гипотеза, утверждающая, что жизнь создана сверхъестественным существом в результате акта творения, то есть Богом.

    2. Гипотеза стационарного состояния, согласно которой жизнь существовала всегда.

    3. Гипотеза самопроизвольного зарождения жизни, которая основывается на идее многократного возникновения жизни из неживого вещества.

    4. Гипотеза панспермии, согласно которой жизнь была занесена на Землю из космического пространства.

    5. Гипотеза исторического происхождения жизни путем биохимической эволюции.

    Согласно креационистской гипотезе, которая имеет самую длинную историю, создание жизни есть акт божественного творения. Свидетельством этому является наличие в живых организмах особой силы, «души», управляющей всеми жизненными процессами. Гипотеза креационизма навеяна религиозными воззрениями и к науке отношения не имеет.

    Согласно гипотезе стационарного состояния, жизнь никогда не возникала, а существовала вечно вместе с Землей, отличаясь большим разнообразием живого. С изменением условий жизни на Земле происходило и изменение видов: одни исчезали, другие появлялись. Эта гипотеза основывается в основном на исследованиях палеонтологии. По своей сущности эта гипотеза не относится к концепциям возникновения жизни, поскольку вопрос о происхождении жизни она принципиально не затрагивает.

    Гипотеза самопроизвольного зарождения жизни была выдвинута в древнем Китае и Индии как альтернатива креационизму. Представления этой гипотезы поддерживали мыслители Древней Греции (Платон, Аристотель), а также ученые периода Нового времени (Галилей, Декарт, Ламарк). Согласно этой гипотезе, живые организмы (низшие) могут появиться путем саморождения из неживого вещества, содержащего некое «активное начало». Так, например, по Аристотелю, насекомые и лягушки при определенных условиях могут заводиться в иле, сырой почве; черви и водоросли в стоячей воде, а вот личинки мух – в протухшем мясе при его гниении.

    Однако уже с начала XVII в. такое понимание происхождения жизни стало подвергаться сомнению. Ощутимый удар по этой гипотезе нанес итальянский естествоиспытатель и врач Ф. Реди (1626–1698), который в 1688 г. раскрыл сущность появления жизни в гниющем мясе. Ф. Реди сформулировал свой принцип: «Все живое – от живого» и стал основоположником концепции биогенеза, утверждавшей, что жизнь может возникнуть только из предшествующей жизни.

    Французский микробиолог Л. Пастер (1822–1895) своими опытами с вирусами окончательно доказал несостоятельность идеи спонтанного самозарождения жизни. Однако, опровергнув эту гипотезу, он не предложил свою, не пролил свет на вопрос о возникновении жизни.

    Тем не менее опыты Л. Пастера имели большое значение в получении богатого эмпирического материала в области микробиологии его времени.

    Гипотеза панспермии – о неземном происхождении жизни путем занесения «зародышей жизни» из космоса на Землю – впервые была высказана немецким биологом и врачом Г. Рихтером в конце XIX в. Концепция панспермии (от греч. pan – весь, sperma – семя) допускает возможность происхождения жизни в разное время в разных частях Вселенной и переноса ее различными путями на Землю (метеориты, астероиды, космическая пыль).

    Действительно, в настоящее время получены некоторые данные, указывающие на возможность образования органических веществ химическим путем в условиях космоса. Так, в 1975 г. предшественники аминокислот были найдены в лунном грунте. В межзвездных облаках обнаружены простейшие соединения углерода, в том числе и близкие к аминокислотам. В составе метеоритов найдены альдегиды, вода, спирты, синильная кислота и т. д.

    Концепцию панспермии разделяли крупнейшие ученые конца XIX – начала XX в.: немецкий химик и агроном Ю. Либих, английский физик У. Томсон, немецкий естествоиспытатель Г. Гельмгольц, шведский физико-химик С. Аррениус. С. Аррениус в 1907 г. в своих трудах даже описывал, как с других планет в космическое пространство уходят с пылинками и живые споры организмов. Носясь в бескрайних просторах космоса под действием давления звездного света, они попадали на планеты и там, где были благоприятные условия (в том числе на Земле) начинали новую жизнь. Идеи панспермии поддерживали и некоторые русские ученые: геофизик П. Лазарев, биолог Л. Берг, биолог-почвовед С. Костычев.

    Существует идея о возникновении жизни на Земле почти с момента ее образования. Как известно, Земля образовалась около 5 млрд лет назад. Значит, жизнь могла зародиться во время образования Солнечной системы, то есть в космосе. Поскольку длительность эволюции Земли и жизни на ней разнится незначительно, то существует версия, что жизнь на Земле – это продолжение вечного ее существования. Эта позиция близка к теории вечного существования жизни во Вселенной. В масштабе глобального эволюционного процесса можно полагать, что возникновение жизни на Земле может, по-видимому, совпадать с образованием и существованием материи. Академик В. Вернадский разделял идею вечности жизни не в контексте ее перераспределения в космосе, а в смысле неразрывности и взаимосвязанности материи и жизни. Он писал, что «жизнь и материя неразрывны, взаимосвязаны и между ними нет временной последовательности». На эту же мысль указывает и русский биолог и генетик Тимофеев-Ресовский (19001982). В своем кратком очерке теории эволюции (1977 г.) он остроумно заметил: «Мы все такие материалисты, что нас всех безумно волнует, как возникла жизнь. При этом нас почти не волнует, как возникла материя. Тут все просто. Материя вечна, она ведь всегда была, и ненужно никаких вопросов. Всегда была. А вот жизнь, видите ли, обязательно должна возникнуть. А может быть, она тоже была всегда. И не надо вопросов, просто всегда была, и все».

    Для обоснования панспермии в научно-популярной литературе приводятся «факты» о неопознанных летающих объектах, прилете инопланетян на Землю, наскальные топологические рисунки.

    Однако серьезных доказательств эта концепция не имеет, а многие доводы выступают против нее. Известно, что диапазон жизненных условий для существования живого довольно узок. Поэтому вряд ли живые организмы выжили бы в космосе под действием ультрафиолетовых лучей, рентгеновского и космического излучения. Но и не исключается возможность занесения отдельных предпосылочных факторов жизни на нашу планету из космоса. Следует отметить, что это принципиального значения не имеет, поскольку концепция панспермии в корне не решает проблемы происхождения жизни, а лишь переносит ее за пределы Земли, не раскрывая самого механизма ее образования.

    Таким образом, ни одна из перечисленных четырех гипотез до настоящего времени не подтверждена надежными экспериментальными исследованиями.

    Наиболее доказательно с точки зрения современной науки выглядит пятая гипотеза – гипотеза происхождения жизни в историческом прошлом в результате биохимической эволюции. Ее авторами являются отечественный биохимик академик А. Опарин (1923 г.) и английский физиолог С. Холдейн (1929 г.). Об этой гипотезе мы подробно будем говорить в следующем разделе.


    Гипотеза происхождения жизни в историческом прошлом в результате биохимической эволюции А. И. Опарина

    С точки зрения гипотезы А. Опарина, а также с позиций современной науки возникновение жизни из неживого вещества произошло в результате естественных процессов во Вселенной при длительной эволюции материи. Жизнь есть свойство материи, которое появилось на Земле в определенный момент ее истории. Это результат процессов, протекающих сначала многие миллиарды лет в масштабе Вселенной, а потом сотни миллионов лет на Земле.

    А. Опарин выделил несколько этапов биохимической эволюции, конечной целью которых явилась примитивная живая клетка. Эволюция шла по схеме:

    1. Геохимическая эволюция планеты Земля, синтез простейших соединений, таких как СО2,1 ч[Н320 и т. д., переход воды из парообразного состояния в жидкое в результате постепенного охлаждения Земли. Эволюция атмосферы и гидросферы.

    2. Образование из неорганических соединений органических веществ – аминокислот – и их накопление в первичном океане в результате электромагнитного воздействия Солнца, космического излучения и электрических разрядов.

    3. Постепенное усложнение органических соединений и образование белковых структур.

    4. Выделение белковых структур из среды, образование водных комплексов и создание вокруг белков водной оболочки.

    5. Слияние таких комплексов и образование коацерватов (от лат. coacervus – сгусток, куча, накопление), способных обмениваться веществом и энергией с окружающей средой.

    6. Поглощение коацерватами металлов, что привело к образованию ферментов, ускоряющих биохимические процессы.

    7. Образование гидрофобных липидных границ между коацерватами и внешней средой, что привело к образованию полупроницаемых мембран, что обеспечивало стабильность функционирования коацервата.

    8. Выработка в ходе эволюции у этих образований процессов саморегуляции и самовоспроизведения.

    Так, по гипотезе А. Опарина, появилась примитивная форма живого вещества. Такова, по его мнению, предбиологическая эволюция вещества.

    Академик В. Вернадский возникновение жизни связывал с мощным скачком, прервавшим безжизненную эволюцию земной коры. Этот скачок (бифуркация) внес в эволюцию столько противоречий, что они создали условия для зарождения жизни.

    8.8. Физико-химические предпосылки для зарождения жизни на Земле

    Как известно, возраст Земли составляет примерно 5 млрд лет. Жизнь на Земле существует порядка 3,5–3,7 млрд лет. Так, признаки деятельности первых живых организмов обнаружены в докембрийских породах. Как видно, жизнь по «возрасту своему» является почти ровесницей Земли. Отсюда следует, что само происхождение жизни на Земле тесно связано с протеканием определенных химических процессов и реакций на поверхности нашей планеты.

    Начальный этап этого процесса (появления жизни) связан с геологической эволюцией Земли. На первых этапах своей истории наша планета была очень горячей (4–8 тыс. °С). По мере остывания вследствие вращения атомы тяжелых элементов смещались к центру. На поверхностных слоях концентрировались атомы легких элементов, таких как углерод, азот, водород, кислород. При дальнейшем охлаждении Земли появились химические соединения: метан, вода, двуокись углерода, аммиак, молекулярный водород, азот. В этой атмосфере присутствовали лишь следы свободного кислорода. Она была богата инертными газами: неоном, аргоном, гелием.

    Физические и химические свойства воды (высокая теплоемкость, вязкость, полярность, агдезия, когезия, хороший растворитель и т. д.) и углерода (способность образовывать линейные соединения, трудность образования оксидов, способность к восстановлению, ковалентная связь) определили роль воды и углерода в зарождении жизни.


    Образование простых органических соединений

    Первичная атмосфера Земли на начальных этапах эволюции планеты носила восстановительный характер, поскольку практически не содержала свободного кислорода. Понижение температуры способствовало переходу некоторых газообразных соединений в жидкое и твердое состояния. При падении температуры поверхности Земли ниже 100 °C произошла конденсация водяных паров с сильнейшими ливнями и грозами. Это привело к образованию первичных водоемов. Активная вулканическая деятельность Земли выносила в водную среду наряду с другими соединениями множество соединений металлов с углеродом, карбидов. В результате соединения карбидов с водой образовывались углеводородные соединения. Теплая дождевая вода имела в своем составе углеводородные соединения, газы (СО2,NН3 и др.), соли, которые вступали в химические реакции. Образовывались и углеродисто-азотистые группы – N = С = N-. Постепенно в водной среде на поверхности нашей молодой планеты стали накапливаться простейшие органические соединения.


    Образование сложных органических соединений

    Следующий этап биогенеза характеризовался образованием уже более сложных органических соединений, созданием белковых веществ. Повышенная температура в водах океана, мощное ультрафиолетовое излучение Солнца (тогда озоновый слой отсутствовал), грозовые электрические разряды создавали мощный энергетический фон, благодаря которому простые молекулы органических веществ при взаимодействии с другими химическими соединениями и между собой постепенно усложнялись. Это усложнение привело к образованию различных полимеров: полисахаридов, аминокислот, жирных кислот, нуклеиновых кислот. Это предположение экспериментально было подтверждено американским ученым биологом С. Миллером в 1953 г. на специально сконструированной установке. При этом были получены сахара и целый ряд аминокислот. Позже в аналогичных экспериментах в условиях лаборатории была доказана возможность получения сложных биохимических соединений, в том числе и белковых молекул, а также азотистых оснований нуклеотидов. Данные опыты показали возможность образования молекул белка в искусственных условиях.

    Образовавшиеся сложные органические вещества скапливались в водах первичного океана, особенно в его прибрежных, хорошо прогреваемых частях, образуя первичный «бульон». Его насыщению способствовала и деятельность подземных вулканов. В таком «бульоне» предположительно мог развиваться процесс образования сложных органических макромолекул.

    Химический состав живой природы

    Состав живых организмов насчитывает всего 16 химических элементов, в то время как неживая природа – более 110 элементов. Из 16 элементов живой природы четыре элемента – углерод, водород, кислород и азот – составляют 99 % массы живого вещества. Связано это с особенностями физических и химических свойств этих элементов – валентностью, способностью образовывать прочные ковалентные связи между атомами. В живом организме главным элементом является углерод. В основе живого лежат углеродные соединения, где атомы углерода связываются между собой прочной ковалентной связью. Это обеспечивает стабильность и прочность как химического соединения, так и живого организма в целом. Атомы углерода способны образовывать длинные разветвленные цепочки как друг с другом, так и с атомами кислорода, водорода, азота. По существу, все живое – это «углеродные» тела. Раньше полагали, что молекулы углерода присущи только живому. Поэтому соединения углерода получили названия органических. В природе соединений углерода существует гораздо больше, чем соединений других элементов таблицы Менделеева, причем большая их часть не связана с живыми организмами.

    В состав живого входят также такие макроэлементы, как фосфор, сера, калий, кальций, магний, железо, натрий. Они образуют группу так называемых биофильных элементов, или органогенов. Важное функциональное значение для организмов имеют и микроэлементы: кобальт, бор, цинк, молибден, йод, медь. Они составляют сотые и тысячные доли процента от массы организмов.


    Мономеры и макромолекулы

    Все живое состоит из различных малых органических молекул – мономеров. Объединяясь, мономеры образуют макромолекулы (их еще называют биологическими молекулами), представляющие собой полимерные цепочки. Мономеры складываются в определенную, конкретную молекулярную конструкцию, образуя при этом необходимый конкретный белок. Это значит, что процессы химической самоорганизации макромолекул играли ключевую роль в предбиологической эволюции.

    Современная эволюционная химия как наука о самоорганизации и эволюции химических систем предпочтение в проблеме самоорганизации макромолекулярных структур в предбиологический период отдает катализу. Появление автокаталитических, а также повышение уровня информационных связей резко увеличило интенсивность упорядочения перехода материи от простых ко все более сложным, информационно насыщенным органическим соединениям. По мнению А. Руденко, эволюционирующими элементами в развитии предбиологических химических систем являются именно те структуры и соединения, которые резко усиливали действия катализаторов. В этом смысле биокатализ с участием ферментов тесно связан с проблемами биогенеза и происхождения жизни.

    По мнению М. Эйгена, образование макромолекул и их эволюция связаны с неравновесным состоянием открытых живых систем. Обмен веществом и информацией с окружающей средой (метаболизм) можно рассматривать как совокупность химических реакций в живой системе (клетке). При этом молекулы-мономеры, переходя из окружающей среды в живую систему (организм), привносят в него определенную информацию. Последняя перерабатывается организмом и закрепляется в нем при процессах полимеризации и деструкции. Полимеризация идет путем самоинструктируемой репродукции образованных макромолекул. Если в живой системе скорость репродукции (воспроизведения) выше, чем скорость деструкции биополимеров, то макромолекулы растут; если нет, то они распадаются. Поступают в систему только те мономеры, которые преодолевают конкуренцию, поэтому они имеют определенную селекционную ценность для макромолекул. Таким образом, идет естественный отбор, то есть предшественниками живых систем, по-видимому, были лишь те макромолекулы, которые обладали определенными необходимыми свойствами. Следовательно, дарвинский естественный отбор уже проявил себя и на добиологической стадии развития материи.

    В живых организмах важную роль играют три класса молекул – мономеров: аминокислоты, нуклеотиды, моносахариды. Они служат строительным материалом для полимерных биологических макромолекул, таких как белки, нуклеиновые кислоты и полисахариды. Размеры мономеров колеблются в диапазоне 0,5–1,0 нм, а макромолекул – 5-300 нм. Диаметр молекулы аминокислоты порядка 0,5 нм, хромосомы – примерно 1 нм, а атомов углерода и водорода – около 0,4 нм. Для сравнения средний диаметр соматической клетки 10–20 мкм, растительной – 30–50 мкм. Таким образом, атомы примерно в 100 000 раз меньше клетки.

    Все живые организмы, их клетки, органеллы как субструктуры клеток, выполняющие специфические функции, являются в целом совокупностями макромолекул. Живые организмы содержат четыре основных класса биополимеров: белки, нуклеиновые кислоты, углеводы и липиды. Они являются структурной основой всех живых организмов и играют важнейшую роль в процессах жизнедеятельности.

    Белки – это высокомолекулярные органические соединения, макромолекулы которых построены из остатков 20 аминокислот (мономеров). Белки играют первостепенную роль в процессах жизнедеятельности всех живых организмов. Им свойственны разнообразные функции: структурная – построение клеток и тканей; регуляторная – ее выполняют некоторые из гормонов; защитная – выполняют антитела; транспортная – выполняет гемоглобин; энергетическая и т. д. Только в организме человека, например, насчитывается свыше 10 млн различных белков. Без белков невозможен обмен веществ. Биосинтез белков идет при участии нуклеиновых кислот. На долю белка приходится примерно 50 % сухой массы всех органических соединений клетки.

    Нуклеиновые кислоты, или полинуклиотиды. Эти биополимеры построены из большого числа остатков нуклиотидов и являются составной частью всех живых систем. Этим макромолекулам принадлежит ведущая роль в биосинтезе белков и передаче наследственных признаков организма. Эти кислоты сходны по своему составу и строению, но значительно различаются по молекулярному весу, который составляет диапазон от нескольких десятков тысяч до 150 млн. Существует 2 типа нуклеиновых кислот – ДНК и РНК. ДНК – дезоксирибонуклеиновая кислота – содержит генетическую информацию о последовательности аминокислот в полипептидных цепях и определяет саму структуру белков. РНК – рибонуклеиновая кислота несет ответственность за создание белков. Порядок расположения составляющих молекулы ДНК и РНК нуклеотидов определяет порядок расположения аминокислот, а также их воспроизведение в первичных структурах белков. Следовательно, через молекулы нуклеиновых кислот передается информация о различных наследственных свойствах структур живых организмов и идет реализация механизма наследственности.


    Коацерваты

    Возрастающая концентрация «первичного бульона» органических веществ приводила к их взаимодействию, объединению и обособлению в некие мелкие структуры в водном растворе, которые А. Опарин назвал коацерватными каплями или коацерватами. Следует отметить, что в настоящее время структуры, подобные коацерватам, получают искусственным путем, смешивая растворы разных белков. Коацерваты, по А. Опарину, – это мельчайшие коллоидные образования типа капель, обладающие осмотическими свойствами. Благодаря взаимодействию электрических зарядов в слабых растворах происходит агрегация молекул. Молекулы воды создают поверхность раздела вокруг образовавшегося агрегата. Предположительно, что уже одновременно с образованием полимеров (полимеризации) шло и образование биологических мембран, ограничивающих вещества коацервата от среды.

    Образование мембран считается трудной задачей химической эволюции. Без них не может быть даже самой примитивной клетки. Предполагается, что мембранные структуры, как и ферменты, возникли в ходе образования коацерватов. Биологические мембраны – это белково-липидные агрегаты, характеризующиеся полупроницаемостью. Они ограничивают вещество коацервата от окружающей среды, придавая прочность коацерватной «упаковки».

    Коацерваты имеют сложную организацию и обладают рядом свойств примитивных живых систем. Так, они способны к поглощению из окружающей среды различных веществ, которые вступают во взаимодействие с веществами коацервата. Это похоже на первичную форму усвоения веществ (ассимиляцию). Образующиеся в коацервате продукты распада выделяются наружу, проходя через полупроницаемую перегородку. Однако, в принципе, коацерваты нельзя отнести к живым системам, поскольку они не обладают способностью к саморегуляции и самовоспроизведению. Они обладают лишь предпосылками живых систем.


    Образование простейших форм живых организмов

    Переход коацерватов как преджизненных систем к живому – это главный вопрос в учении о происхождении жизни. Он связан с действием механизма конвариантной редупликации. В ходе предбиологического отбора выживали те системы, которые имели не только способность к обмену веществ, но и особое строение макромолекул. Это обусловило появление главного качества живого – наследственности. При появлении устойчивого механизма воспроизведения генетической информации эра химической эволюции закончилась. Наступило время биологической эволюции, эра естественного отбора.

    С образованием коацерватов как предвестников живой клетки В. Вернадский связывает появление первичного круговорота веществ в природе, обусловленного взаимным обменом органических веществ в процессе их синтеза или распада. При этом уже имел место процесс естественного отбора: более устойчивые образования сохранялись, а неустойчивые – распадались. В процессе отбора устойчивые коацерваты не теряли свою структуру даже при делении. Это характеризует уже самоорганизацию и самовоспроизводство.

    Переход систем к самовоспроизведению, то есть к матричному синтезу белков являлся огромным качественным скачком в эволюции материи. Как произошел этот скачок, пока не ясно. Основная сложность в том, что для саморепродукции нуклеиновых кислот необходимы ферментные белки, а для создания белков – нуклеиновые кислоты. Как разорвать этот круг? Как объяснить, что на стадии предбиологического отбора произошло объединение способностей к самовоспроизводству полинуклиотидов с каталитической активностью полипептидов в условиях разобщения в пространстве и времени начальных и конечных продуктов реакции.

    Наиболее перспективными в этом отношении являются гипотезы, основывающиеся на принципе самоорганизации и представлениях о гиперциклах.

    Гиперциклы – это системы, связывающие самовоспроизводящиеся (автокаталитические) единицы друг с другом посредством циклической связи. В них происходит самоорганизация химических реакций, так что циклическая организация одного уровня является элементом цикла другого, уже более высокого уровня. По мнению немецкого физико-химика М. Эйгана (род. в 1927 г.), гиперциклы определяют репродукцию последующих белков, а также осуществляют роль самовоспроизводящейся системы химических реакций. Гиперцикл, сформировавшийся из нуклеиновых кислот, которые способны с помощью ферментов синтезировать белки, обеспечивает отбор макромолекул с объемом информации, достаточным для возникновения живого организма. Циклические реакции в процессе эволюции повторяются, и каждое повторение ведет к образованию новых, более совершенных систем управления. Такое развитие обеспечивает последующему поколению организмов все большую адаптацию к окружающей среде, увеличивая дальнейшее разнообразие их реакций. При этом происходит усложнение структур, возрастает уровень их организации, что уменьшает энтропию внутренних состояний.

    Следовательно, можно предположить, что гиперциклы являются тем мостиком, через который природа организовала переход от молекул неживой природы к биомакромолекулам живой, преодолев барьер между живым и неживым.

    Дальнейший предбиологический отбор и развитие коацерватов, вероятно, шли несколькими путями. Один из них – это выработка и накопление специфических белковоподобных полимеров, ускорителей химических реакций. В связи с этим строение нуклеиновых кислот имело «направленность на размножение» систем, когда удвоение нуклеиновых кислот шло при участии ферментов. По-видимому, на этом направлении и произошло образование циклического обмена веществ в живых системах.

    Второй путь связан с отбором в системе коацерватов самих нуклеиновых кислот в наиболее удачных сочетаниях последовательности нуклеотидов. На таких направлениях формировались гены. Сформировавшиеся гены делают систему уже самовоспроизводящейся, со сложившейся определенной вполне стабильной последовательностью нуклеотидов в нуклеиновой кислоте. Эти системы уже могут по определению называться живыми. Так, предположительно, сформировалась первичная самовоспроизводящаяся живая система – примитивные первичные организмы.

    Конечно, в проблеме возникновения живого еще много неясного. Неразрешенным остаются вопросы, почему белковые полимерные цепи содержат только «левую симметрию», а вот спираль молекулы ДНК закручена вправо; какие причины предбиологической эволюции могли привести к такой закономерности в асимметрии живого.

    Асимметричные молекулы, отклоняющие луч света вправо или влево, в химии называются стереоизомерами. Само же свойство зеркальной асимметрии носит название хиральности или киральности (от греч. cheir – рука).

    Известно, что в неживой природе хиралъные (киралъные) молекулы равновесно встречаются как в левом, так и в правом варианте. В живой природе – только в левом или только в правом. В этом смысле молекулы неживой природы симметричны и хирально нечисты, в то время как молекулы живых организмов хирально чисты. Например, молекула воды зеркально симметрична, а вот молекулы глюкозы, фруктозы, аминокислоты зеркально асимметричны. Это явление представляет собой один из признаков отличия живого от неживого. Так, попадая в организм растения, вода и углекислый газ, то есть хирально нечистые молекулы, в результате фотосинтеза «переконструируются» в хираль-но чистые молекулы органических веществ (белки, сахара и т. д.).

    Таким образом, отличие «живых» молекулярных конструкций от «неживых» состоит не только в том, что первые построены из органических веществ молекул, но еще и в том, что биомолекулы вмонтированы в эту конструкцию оригинальным образом с учетом только либо левой, либо правой формы.

    Сейчас с помощью экспериментов доказано, что такое разделение имеет место при нелинейной динамике протекания химических автокаталитических реакций. Это значит, что переход от симметричных молекул неживого к асимметричным биомолекулам живой природы вполне реально мог происходить при определенных условиях на стадии предбиологической эволюции материи. Таким образом, одним из необходимых условий перехода от неживого к живому является спонтанное, возможно скачкообразное, нарушение зеркальной симметрии как результат реакций автокаталитического типа. Образование жизни – это процесс самоорганизации, когда из хаотического состояния левых и правых неорганических и органических молекул соединений (энантиомеров) стали образовываться упорядоченные, хирально чистые органические только левые или только правые молекулы.

    По-видимому, именно естественный отбор в процессе химической (предбиологической) эволюции привел к хиральной чистоте нуклеиновых кислот и белков, их несовместимости со своими зеркальными отображениями. По подсчетам ученых, для этого потребовалось около 1 млн лет.

    Некоторые современные исследователи генетической программы строения белков живого организма с позиций хиральности рассматривают уникальную последовательность звеньев в определенных биополимерных цепях. Такое свойство живой материи они называют гомо-хиральностью. Согласно этим выводам, основные биологические макромолекулы представляют собой гомохиральные полимеры. Однако механизм образования гомохиральности пока остается загадкой.


    Клетка как элементарная единица живого

    Все живое состоит из клеток как отдельных единиц и размножается из клеток. Поэтому клетку можно считать мельчайшей единицей всего живого. Клетка характеризуется всеми признаками живого. Каждая отдельная клетка является микроносителем жизни, так как в ней заключена генетическая информация, достаточная для воспроизведения всего организма. Жизнь каждой отдельной клетки организма подчинена деятельности организма в целом. Клетке свойственны все признаки живого: раздражимость, обмен веществ, самоорганизация и саморегуляция, передача наследственных признаков. Это сложная самоорганизующаяся биохимическая «лаборатория», состоящая из большого количества четко и согласованно функционирующих органоидов. Отдельные клетки способны самостоятельно существовать только в случае, если они представляют собой одноклеточный организм. Клетки же многоклеточного организма неспособны к самостоятельному существованию в открытой среде. Основной составляющей клетки являются биополимеры, призванные осуществлять важнейшие функции в общей системе согласованных автокаталитических циклов, которые составляют основу жизни биологических систем.

    Важнейшей функцией клетки является ее размножение путем деления. С ростом клетки постепенно замедляются процессы жизнедеятельности вследствие ухудшения условий питания отдельных ее элементов. Рост клетки сопровождается также построением копий ее составляющих элементов. В связи с этим способности управления внутренними процессами клетки снижаются, растет энтропия, что способствует переходу в неустойчивое состояние. Далее идет деление клетки на две дочерние как выход из неустойчивого, неравновесного состояния. При делении клетки лишняя энтропия сбрасывается наружу, а образовавшиеся две новые клетки обретают устойчивость до момента следующего деления. На протяжении всей жизни в любом организме идет непрерывная замена старых клеток на образующиеся новые. Средний срок жизнедеятельности клеток человека – один-два дня. Каждый день в организме человека погибает около 70 млрд клеток кишечного эпителия и 2 млрд эритроцитов, которые заменяются на новые. Полная замена клеток крови человека происходит в течение четырех месяцев. Нейроны – нервные клетки – не восстанавливаются, но в течение всей жизни человека непрерывно перестраиваются.

    Количество клеток у различных живых систем различно. Так, у примитивных беспозвоночных оно достигает 102-104, у высокоорганизованных организмов – 1015-1017. Масса клетки составляет 10-8-10-9 г. Средний размер соматической клетки живого организма достигает в диаметре 10–20 мкм, а растительной – 30–50 мкм.

    8.9. Теории эволюции органического мира

    Начальные этапы биологической эволюции

    Появление примитивной клетки означало окончание предбиологической эволюции живого и начало биологической эволюции жизни.

    Первыми возникшими на нашей планете одноклеточными организмами были примитивные бактерии, не обладавшие ядром, то есть прокариоты. Как уже указывалось, это были одноклеточные безъядерные организмы. Они были анаэробами, поскольку жили в бескислородной среде, и гетеротрофами, поскольку питались готовыми органическими соединениями «органического бульона», то есть веществами, синтезированными в ходе химической эволюции. Энергетический обмен у большинства прокариот происходил по типу брожения. Но постепенно «органический бульон» в результате активного потребления убывал. По мере его исчерпания некоторые организмы стали вырабатывать способы формирования макромолекул биохимическим путем, внутри самих клеток при помощи ферментов. В таких условиях конкурентоспособными оказались клетки, которые смогли получать большую часть необходимой энергии непосредственно от излучения Солнца. По этому пути и шел процесс формирования хлорофилла и фотосинтеза.

    Переход живого к фотосинтезу и автотрофному типу питания явился поворотом в эволюции живого. Атмосфера Земли стала «наполняться» кислородом, который для анаэробов явился ядом. Поэтому многие одноклеточные анаэробы погибли, другие укрылись в бескислородных средах – болотах и, питаясь, выделяли не кислород, а метан. Третьи приспособились к кислороду. У них центральным механизмом обмена стало кислородное дыхание, которое позволило увеличить выходполезной энергии в 10–15 раз по сравнению с анаэробным типом обмена – брожением. Переход к фотосинтезу был длительным процессом и завершился около 1,8 млрд лет назад. С возникновением фотосинтеза в органическом веществе Земли накапливалось все больше энергии солнечного света, что ускоряло биологический круговорот веществ и эволюцию живого в целом.

    В кислородной среде сформировались эукариоты, то есть одноклеточные, имеющие ядро организмы. Это были уже более совершенные организмы с фотосинтетической способностью. Их ДНК уже были сконцентрированы в хромосомы, тогда как у прокариотных клеток наследственное вещество было распределено по всей клетке. Хромосомы эукариотов были сконцентрированы в ядре клетки, а сама клетка уже воспроизводилась без существенных изменений. Таким образом, дочерняя клетка эукариот была почти точной копией материнской и имела столько же шансов на выживание, сколько и материнская.

    Образование растений и животных

    Последующая эволюция эукариотов была связана с разделением на растительные и животные клетки. Такое разделение произошло в протерозое, когда Земля была заселена одноклеточными организмами (табл. 8.2).

    Таблица 8.2

    Возникновение и распространение организмов в истории Земли (по З. Брему и И. Мейнке, 1999 г.)





    С начала эволюции эукариоты развивались двойственно, то есть в них параллельно были группы с автотрофным и гетеротрофным питанием, что обеспечивало целостность и значительную автономность живого мира.

    Растительные клетки эволюционировали в сторону уменьшения способности передвижения из-за развития жесткой целлюлозной оболочки, но в направлении использования фотосинтеза.

    Животные клетки эволюционировали в сторону увеличения способности к передвижению, а также совершенствования способов поглощать и выделять продукты переработки пищи.

    Следующим этапом развития живого стало половое размножение. Оно возникло примерно 900 млн лет назад.

    Дальнейший шаг в эволюции живого произошел около 700–800 млн лет назад, когда появились многоклеточные организмы с дифференцированными телом, тканями и органами, выполняющими определенные функции. Это были губки, кишечнополостные, членистоногие и т. д., относящиеся к многоклеточным животным.

    На протяжении всего протерозоя и в начале палеозоя растения населяют в основном моря и океаны. Это зеленые и бурые, золотистые и красные водоросли.

    Впоследствии в морях кембрия уже существовали многие типы животных. В дальнейшем они специализировались и совершенствовались. Среди морских животных той поры ракообразные, губки, кораллы, моллюски, трилобиты и т. д.

    В конце ордовикского периода стали появляться крупные плотоядные, а также позвоночные животные.

    Дальнейшая эволюция позвоночных шла в направлении челюстных рыбообразных. В девоне стали появляться уже двоякодышащие рыбы – амфибии, а затем насекомые. Постепенно развивалась нервная система как следствие совершенствования форм отражения.

    Особо важным этапом в эволюции форм живого являлись выход растительных и животных организмов из воды на сушу и дальнейшее увеличение количества видов наземных растений и животных. В дальнейшем именно из них и происходят высокоорганизованные формы жизни. Выход растений на сушу начался в конце силура, а активное завоевание суши позвоночными началось в карбоне.

    Переход к жизни в воздушной среде требовал от живых организмов очень многих изменений и предполагал выработку соответствующих приспособлений. Он резко увеличил темпы эволюции живого на Земле. Вершиной эволюции живого стал человек.

    Жизнь в воздушной среде «увеличила» массу тела организмов, в воздухе не содержатся питательные вещества, воздух иначе, чем вода, пропускает свет, звук, тепло, количество кислорода в нем выше. Ко всему этому необходимо было приспособиться. Первыми приспособившимися к условиям жизни на суше позвоночными были рептилии. Их яйца были снабжены пищей и кислородом для эмбриона, покрыты твердой скорлупой, не боялись высыхания.

    Примерно 67 млн лет назад преимущество в естественном отборе получили птицы и млекопитающие. Благодаря теплокровности млекопитающих они быстро завоевали господствующее положение на Земле, что связано с условиями похолодания на нашей планете. В это время именно теплокровность стала решающим фактором выживания. Она обеспечивала постоянную высокую температуру тела и стабильность функционирования внутренних органов млекопитающих. Живорождение млекопитающих и вскармливание детенышей молоком явилось мощным фактором их эволюции, позволяющим размножаться в разнообразных условиях среды. Развитая нервная система способствовала разнообразию форм приспособления и защиты организмов.

    Произошло разделение хищно-копытных животных на копытных и хищников, а первые насекомоядные млекопитающие положили начало эволюции плацентарных и сумчатых организмов.

    Решающим этапом эволюции жизни на нашей планете явилось появление отряда приматов. В кайнозое примерно 67–27 млн лет назад приматы разделились на низших и человекообразных обезьян, являющихся древнейшими предками современного человека. Предпосылки появления современного человека в процессе эволюции формировались постепенно. Сначала был стадный образ жизни. Он позволил сформировать фундамент будущего социального общения. Причем если у насекомых (пчелы, муравьи, термиты) биосоциальность вела к потере индивидуальности, то у древних предков человека, напротив, она развивала индивидуальные черты особи. Это явилось мощной движущей силой развития коллектива.

    Свой следующий шаг эволюция жизни сделала в образе появления человека разумного (Homo sapiens). Именно человек разумный обладает способностью целенаправленно изменять окружающий его мир, создавать искусственные условия своего обитания и преобразовывать облик нашей планеты.


    Эволюционная теория Ч. Дарвина

    Под эволюцией (от лат. evolutio – развитие, развертывание) следует понимать процесс длительных, постепенных, медленных изменений, приводящих к коренным качественно новым изменениям (образованию других структур, форм, организмов и их видов).

    Идея длительного и постепенного изменения всех видов животных и растений высказывалась учеными задолго до Ч. Дарвина. В таком духе высказывались в разное время Аристотель, шведский натуралист К. Линней, французский биолог Ж. Ламарк, современник Ч. Дарвина английский натуралист А. Уоллес и другие ученые.

    Несомненной заслугой Ч. Дарвина является не сама идея эволюции, а то, что именно он впервые обнаружил в природе принцип естественного отбора и обобщил отдельные эволюционные идеи в одну стройную теорию эволюции. В становлении своей теории Ч. Дарвин опирался на большой фактический материал, на эксперименты и практику селекционной работы по выведению новых сортов растений и различных пород животных.

    При этом Ч. Дарвин пришел к выводу, что из множества разнообразных явлений живой природы явно выделяются три принципиальных фактора в эволюции живого, объединяемых краткой формулой: изменчивость, наследственность, естественный отбор.

    Эти фундаментальные принципы основываются на следующих выводах и наблюдениях над миром живого – это:

    1. Изменчивость. Она свойственна любой группе животных и растений, организмы отличаются друг от друга во многих различных отношениях. В природе невозможно обнаружить два тождественных организма. Изменчивость является неотъемлемым свойством живых организмов, она проявляется постоянно и повсеместно.

    По Ч. Дарвину, в природе имеется два вида изменчивости – определенная и неопределенная.

    1) Определенная изменчивость (адаптивная модификация) – это способность всех особей одного и того же вида в каких-то определенных условиях внешней среды одинаковым образом реагировать на эти условия (пищу, климат и т. д.). По современным представлениям, адаптивные модификации не передаются по наследству, а поэтому в своем большинстве не могут поставлять материал для органической эволюции.

    2) Неопределенная изменчивость (мутации) вызывает существенные изменения в организме в самых различных направлениях. Эта изменчивость в отличие от определенной носит наследственный характер, при этом незначительные отклонения в первом поколении усиливаются в последующих. Неопределенная изменчивость тоже связана с изменениями окружающей среды, но не непосредственно, как в адаптивных модификациях, а опосредованно. Поэтому, по Ч. Дарвину, решающую роль в эволюции играют именно неопределенные изменения.

    2. Постоянная численность вида. Число организмов каждого вида, появляющихся на свет, больше того числа, которое может найти пропитание и выжить; тем не менее численность каждого вида в естественных условиях остается относительно постоянной.

    3. Конкурентные отношения особей. Поскольку рождается больше особей, чем может выжить, в природе постоянно происходит борьба за существование, конкуренция за пищу и места обитания.

    4. Адаптивность, приспособляемость организмов. Изменения, облегчающие организму выживание в какой-либо определенной среде, дают своим обладателям преимущества перед другими организмами, которые менее приспособились к внешним условиям и в результате погибли. Идея «выживаемости наиболее приспособленных» является главной в теории естественного отбора. 5. Воспроизведение «удачных» благоприобретенных характеристик в потомстве. Выживающие особи дают потомство, и таким образом «удачные», позволившие выжить положительные изменения передаются последующим поколениям.

    Сущность эволюционного процесса состоит в непрерывном приспособлении живых организмов к разнообразным условиям окружающей природной среды и в появлении все более сложно устроенных организмов. Поэтому биологическая эволюция направлена от простых биологических форм к более сложным формам.

    Таким образом, естественный отбор, являющийся результатом борьбы за существование, есть основной фактор эволюции, направляющий и определяющий эволюционные изменения. Эти изменения становятся заметными, проходя через смену многих поколений. Именно в естественном отборе отражается одна из фундаментальных черт живого – диалектика взаимодействия органической системы и среды.

    Несомненные достоинства эволюционной теории Ч. Дарвина имели и некоторые недостатки. Так, она не могла объяснить причин появления у некоторых организмов определенных структур, кажущихся бесполезными; у многих видов отсутствовали переходные формы между современными животными и ископаемыми; слабым местом были также представления о наследственности. В дальнейшем обнаружились недостатки, касающиеся основных причин и факторов органической эволюции. Уже в XX в. стало ясно, что теория Ч. Дарвина нуждается в дальнейшей доработке и совершенствовании с учетом последних достижений биологической науки. Это стало предпосылкой для создания синтетической теории эволюции (СТЭ).


    Синтетическая теория эволюции

    Достижения генетики в раскрытии генетического кода, успехи молекулярной биологии, эмбриологии, эволюционной морфологии, популярной генетики, экологии и некоторых других наук указывают на необходимость соединения современной генетики с теорией эволюции Ч. Дарвина. Такое объединение породило во второй половине XX в. новую биологическую парадигму – синтетическую теорию эволюции. Поскольку она основана на теории Ч. Дарвина, ее называют неодарвинистской. Эту теорию рассматривают как неклассическую биологию. Синтетическая теория эволюции позволила преодолеть противоречия между эволюционной теорией и генетикой. СТЭ пока еще не имеет физической модели эволюции, но представляет собой многостороннее комплексное учение, которое лежит в основе современной эволюционной биологии. Этот синтез генетики и эволюционного учения явился качественным скачком как в развитии самой генетики, так и современной эволюционной теории. Этот скачок ознаменовал собой создание нового центра системы биологического познания и переходбиологии на современный неклассический уровень ее развития. СТЭ часто называют общей теорией эволюции, представляющей собой совокупность эволюционных идей Ч. Дарвина, главным образом, естественного отбора с современными результатами исследований в области наследственности и изменчивости.

    Основные идеи СТЭ были заложены русским генетиком С. Четвериковым еще в 1926 г. в трудах по популярной генетике. Эти идеи были поддержаны и развиты американскими генетиками Р. Фишером, С. Райтом, английским биологом и генетиком Д. Холдейном и современным русским генетиком Н. Дубининым (1906–1998).

    Основной предпосылкой для синтеза генетики с теорией эволюции стали биометрические и физико-математические подходы к анализу эволюции, хромосомная теория наследственности, эмпирические исследования изменчивости природных популяций и др.

    Опорная точка СТЭ – представление о том, что элементарной составляющей эволюции является не вид(по Дарвину) и не особь (по Ламарку), а популяция. Именно она есть целостная система взаимосвязи организмов, обладающая всеми данными для саморазвития. Отбору подвергаются не какие-нибудь отдельные признаки или особи, а вся популяция, ее генотип. Однако этот отбор осуществляется посредством изменения фенотипических признаков отдельных особей, что приводит к появлению новых признаков при смене биологических поколений.

    Элементарной единицей наследственности служит ген. Он представляет собой участок молекулы ДНК (или хромосомы), определяющий развитие определенных признаков организма. Советский генетик Н. В. Тимофеев-Ресовский (1900–1981) сформулировал положение о явлениях и факторах эволюции. Оно заключается в следующем:

    ¦ популяция – элементарная структурная единица;

    ¦ мутационный процесс является поставщиком элементарного эволюционного материала;

    ¦ популяционные волны – колебания численности популяции в ту или иную сторону от средней численности ее особей;

    ¦ изоляция закрепляет различия в наборе генотипов и вызывает деление исходной популяции на несколько самостоятельных;

    ¦ естественный отбор – избирательное выживание с возможностью оставления потомства отдельными особями, достигшими репродуктивного возраста.

    Главный определяющий фактор синтетической теории эволюции – естественный отбор, направляющий эволюционный процесс. Чисто биологическое значение особи как организма, давшего потомство, оценивается ее вкладом в генофонд популяции. Объектами отбора в популяции являются фенотипы отдельных особей. Фенотип отдельного организма определяется и формируется на основе реализующейся информации генотипа в изменяющихся условиях среды. Вследствие этого из поколения в поколение отбор по фенотипам приводит к отбору генотипов.

    Эволюция является единым процессом. В СТЭ различают два уровня эволюции: микроэволюцию, проходящую на популяционно-видовом уровне за относительно короткое время на ограниченных территориях, и макроэволюцию, проходящую на подвидовом уровне, где проявляются общие закономерности и направления в историческом развитии живого.

    Микроэволюция – это совокупность эволюционных процессов, протекающих в популяциях вида, приводящих к изменениям генофондов этих популяций и к образованию новых видов. Она происходит на основе мутационной изменчивости под строгим контролем естественного отбора. Единственным источником появления качественно новых признаков являются мутации. Отбор – это творческий избирательный фактор, направляющий элементарные эволюционные изменения по пути адаптации организмов к изменяющимся условиям среды. На характер процессов микроэволюции оказывают влияние изменения численности популяций (волны жизни), обмен генетической информации между ними, а также изоляция. Микроэволюция приводит либо к изменению всего генофонда вида как целого (филогенетическая эволюция), либо к обособлению их от родительского исходного вида в качестве уже новых форм (видообразование).

    Макроэволюция – это эволюционные преобразования, приводящие к изменению более высокого уровня таксонов, чем вид(семейства, отряды, классы). Она не имеет характерных ей механизмов и осуществляется посредством процессов микроэволюции. Постепенно накапливаясь, микроэволюционные процессы получают свое внешнее выражение в явлениях макроэволюции. Макроэволюция есть обобщенная картина эволюционных изменений, наблюдаемая в широкой исторической перспективе. Поэтому только на уровне макроэволюции проявляются общие тенденции, закономерности и направления эволюции живой природы, не поддающиеся наблюдению на микроэволюционном уровне.

    Современные представления СТЭ указывают на то, что эволюционные изменения носят случайный и ненаправленный характер, поскольку случайные мутации являются для них исходным материалом. Эволюция идет постепенно и дивергентно через отбор небольших случайных мутаций. При этом новые жизненные формы образуются через крупные наследственные изменения, право на жизнь которых определяется естественным отбором. Медленный и постепенно идущий эволюционный процесс может иметь и скачкообразный характер, связанный с изменениями условий окружающей среды в результате бифуркационных процессов развития нашей планеты.

    Синтетическая теория эволюции не является каким-то каноном, застывшей системой теоретических положений. В ее возможном диапазоне формируются новые направления исследований, появляются и будут появляться фундаментальные открытия, способствующие дальнейшему познанию эволюционных процессов живого.

    По современным представлениям, важной практической задачей СТЭ является выработка оптимальных способов управления эволюционным процессом в условиях постоянно нарастающего антропогенного давления на окружающую природную среду. Эта теория используется при решении проблем взаимоотношения человека и природы, природы и человеческого общества.

    Однако у синтетической теории эволюции есть некоторые спорные моменты и трудности, которые дают почву для возникновения недарвинистских концепций эволюции. К ним относятся, например, теория номогенеза, концепция пунктуализма и некоторые другие.

    Теория номогенеза предложена в 1922 г. русским биологом Л. Бергом. Она основана на представлениях о том, что эволюция – это уже запрограммированный процесс реализации внутренних неотъемлемых от живого определенных закономерностей. Живому организму присуща некая внутренняя сила природы, которая всегда действует независимо от внешних условий целенаправленно в сторону усложнения живых структур. В подтверждение этому Л. Берг указывал на некоторые данные по конвергентной и параллельной эволюции некоторых групп растений и животных.

    Одной из недавно возникших недарвинистских концепций является пунктуализм. Сторонники этого направления считают, что процесс эволюции идет скачкообразно – путем редких и быстрых скачков, на которые приходится всего 1 % эволюционного времени. Остальные 99 % времени своего существования видпребывает в состоянии стабильности. В крайних случаях скачок к новому виду может совершиться в небольших популяциях, состоящих всего их десяти особей, в течение одного или нескольких поколений. Эта концепция опирается на генетическую базу, заложенную молекулярной генетикой и современной биохимией. Пунктуализм отвергает генетико-популяционную модель видообразования, идею Ч. Дарвина о разновидностях и подвидах как зарождающихся видах. Пунктуализм сосредоточил свое внимание на молекулярной генетике особи как носителя свойств вида. Идея разобщенности макро– и микроэволюции и независимости управляемых ими факторов придает этой концепции определенную ценность.

    Вполне вероятно, что в будущем может возникнуть единая теория жизни, объединяющая синтетическую теорию эволюции с недарвинистскими концепциями развития живой природы.


    Эволюционная картина мира. Глобальный эволюционизм

    Идея развития мира является важнейшей идеей мировой цивилизации. В своих далеких от совершенства формах она начала проникать в естествознание еще в XVIII в. Но уже XIX в. можно смело назвать веком идей эволюции. В это время концепции развития стали проникать в геологию, биологию, социологию и гуманитарные науки. В первой половине XX в. наука признавала эволюцию природы, общества, человека, но философский общий принцип развития еще отсутствовал.

    И только к концу XX столетия естествознание приобрело теоретическую и методологическую основу для создания единой модели универсальной эволюции, выявления универсальных законов направленности и движущих сил эволюции природы. Такой основой является теория самоорганизации материи, представляющая синергетику. (Как уже указывалось выше, синергетика – это наука об организации материи.) Концепция универсального эволюционизма, которая вышла на глобальный уровень, связала в единое целое происхождение Вселенной (космогенез), возникновение Солнечной системы и планеты Земля (геогенез), возникновение жизни (биогенез), человека и человеческого общества (антропосоциогенез). Такую модель развития природы называют также глобальным эволюционизмом, поскольку именно она охватывает все существующие и мысленно представляемые проявления материи в едином процессе самоорганизации природы.

    Под глобальным эволюционизмом следует понимать концепцию развития Вселенной как развивающегося во времени природного целого. При этом вся история Вселенной, начиная от Большого взрыва и заканчивая возникновением человечества, рассматривается как единый процесс, где космический, химический, биологический и социальный типы эволюции преемственно и генетически тесно взаимосвязаны. Космическая, геологическая и биологическая химия в едином процессе эволюции молекулярных систем отражает их фундаментальные переходы и неизбежность превращения в живую материю. Следовательно, важнейшей закономерностью глобального эволюционизма является направленность развития мирового целого (универсума) на повышение своей структурной организации.

    В концепции универсального эволюционизма важную роль играет идея естественного отбора. Здесь новое всегда возникает как результат отбора наиболее эффективных формообразований. Неэффективные новообразования отбраковываются историческим процессом. Качественно новый уровень организации материи «утверждается» историей лишь тогда, когда он оказывается способным вобрать в себя предшествующий опыт исторического развития материи. Эта закономерность особенно ярко проявляется для биологической формы движения, но она свойственна вообще всей эволюции материи.

    Принцип глобального эволюционизма основан на понимании внутренней логики развития космического порядка вещей, логики развития Вселенной как единого целого. Для такого понимания важную роль играет антропный принцип. Сущность его в том, что рассмотрение и познание законов Вселенной и ее строения ведется человеком разумным. Природа такова, какова она есть, только потому, что в ней есть человек. Иначе говоря, законы построения Вселенной должны быть таковы, чтобы она непременно когда-нибудь породила наблюдателя; если бы они были иными, Вселенную просто некому было бы познавать. Антропный принцип указывает на внутреннее единство закономерностей исторической эволюции Вселенной и предпосылок возникновения и эволюции живой материи вплоть до антропосоциогенеза.

    Парадигма универсального эволюционизма является дальнейшим развитием и продолжением различных мировоззренческих картин мира. Вследствие этого сама идея глобального эволюционизма имеет мировоззренческий характер. Ведущей его целью является установление направленности процессов самоорганизации и развития процессов в масштабе Вселенной. В наше время идея глобального эволюционизма выполняет двоякую роль. С одной стороны он представляет мир как целостность, позволяет осмыслить общие законы бытия в их единстве; с другой стороны – ориентирует современное естествознание на выявление определенных закономерностей эволюции материи на всех структурных уровнях ее организации и на всех этапах ее саморазвития.

    8.10. Основы генетики

    История возникновения генетики

    Основы современной генетики были заложены чешским естествоиспытателем Г. Менделем в 1865 г., который провел ряд опытов по скрещиванию гороха. Анализируя результаты опытов, он пришел к выводу, что наследование признаков осуществляется дискретными частицами (сейчас мы называем их генами) и не имеет промежуточного характера.

    В 1900 г. выводы Г. Менделя были подтверждены экспериментами, проведенными Х. де Фризом, К. Корренсом, Э. Чермаком, что послужило толчком для новых исследований закономерностей наследования свойств родительских особей. Название науки – «генетика» – было введено в 1906 г. английским ученым У. Бетсоном. Понятие гена как элементарной единицы наследственности появилось в 1909 г. в работах датского ученого В. Иогансена.

    Огромную роль в развитии и становлении генетики в начале XX в. сыграли работы выдающихся русских ученых Н. П. Дубинина, Д. Д. Ромашова, Н. В. Тимофеева-Ресовского.

    > Генетика (от греч. gen3tikos – «происхождение») – это наука о законах наследственности и изменчивости.[6]

    Наследственность следует понимать как свойство всех родительских особей передавать свои признаки потомству, благодаря чему живые организмы сохраняют определенные свойства в пределах вида на протяжении множества поколений. В то же время для организмов характерным является свойство изменения фенотипических и генотипических признаков, то есть изменчивость.

    Достижения генетики тесно связаны с развитием новых научных методик и технологий, позволивших установить строение нуклеиновых кислот, расшифровать генетический код, выявить этапы биосинтеза белка и матричного синтеза. Таким образом, сформировались новые направления генетики, ставшие, по сути, самостоятельными науками: молекулярная генетика, иммуногенетика, медицинская генетика, генетика поведения, эволюционная генетика, геногеография и другие.


    Основные понятия генетики

    Ген – участок молекулы ДНК, определяющий возможность развития одного признака или синтеза белковой молекулы.

    Доминантные гены – гены, проявляющиеся у гибридов и подавляющие развитие одного признака; расположены на одних и тех же участках хромосом и определяют развитие одного признака. Обозначаются прописной буквой: А, В…

    Рецессивные гены – гены, подавляемые доминантными, не проявляющиеся у гибридов первого поколения. Обозначаются строчной буквой: а, в.

    Аллельные гены – гены, расположенные на одних и тех же участках хромосом и определяющие развитие одного признака.

    Генотип – совокупность всех генов одного организма.

    Фенотип – совокупность всех признаков одного организма, сформированных в процессе его индивидуального развития. Фенотип составляют не только видимые признаки, но и биохимические и анатомические признаки.

    Генофонд – совокупность всех генов, имеющихся у особей группы, популяции или вида.

    Гомозиготные организмы – организмы, имеющие единообразные наследственные признаки (единообразные аллельные гены – или доминантные, или рецессивные).

    Гетерозиготные организмы – организмы, имеющие различные наследственные признаки (различные аллельные гены—идоминантные, и рецессивные).

    Гамета – половая клетка, имеющая одинарный (гаплоидный) набор хромосом.

    Зигота – клетка, образовавшаяся при слиянии двух гамет (мужской и женской) и имеющая двойной (диплоидный) набор хромосом.


    Закономерности наследственности

    Современная генетика базируется на следующих положениях.

    1. Наследственность является дискретным, жизненно важным свойством всех живых организмов, которое обусловлено наличием генов, локализованных в хромосомах; наследственность обеспечивает характер индивидуального развития организма в определенной среде.

    2. Благодаря наследственной изменчивости возникло многообразие жизненных форм и стала возможной биологическая эволюция.

    3. В основе индивидуального развития организмов лежат биохимические процессы, наследственно запрограммированные в молекулах ДНК и РНК. Наследственная информация передается с помощью генов, участков молекулы ДНК, определяющих характер биохимических реакций, которые обеспечивают проявление одного признака.

    4. Наследственная информация содержится в ядре клетки и в небольших количествах – в митохондриях и хлоропластах.

    Дискретность наследственной информации проявляется в независимом наследовании признаков, что было показано еще в опытах Г. Менделя по скрещиванию двух рас садового гороха – желтого и зеленого. При таком скрещивании Г. Мендель получал в первом поколении одинаковые гибриды, то есть все семена были желтые. В последующем признак, подавляющий проявление другого признака, был назван доминантным (желтая окраска семядолей), а подавляемый признак, не проявляющийся у гибридов первого поколения, назвали рецессивным (зеленая окраска семядолей). При скрещивании гибридов первого поколения Мендель установил, что во втором поколении оказалось 25 % зеленых семян и 75 % – желтых.

    На основе этих опытов и установленных закономерностей были сформулированы законы моногибридного скрещивания, названные именем Г. Менделя.

    > Первый закон Менделя, или закон единообразия гибридов первого поколения: при скрещивании особей, различающихся вариантами одного признака (аллельными генами), в первом поколении проявляется только один признак – доминантный.

    > Второй закон Менделя, или закон расщепления: при скрещивании гибридных особей первого поколения происходит расщепление признаков. При этом расщепление по генотипу и фенотипу различно. Гибриды второго поколения расщепляются по фенотипу в отношении 3: 1, а по генотипу – в отношении 1:2:1.

    > Третий закон Менделя, или закон комбинирования признаков, применим к более сложным вариантам наследования, когда родительские особи отличаются друг от друга по двум и более признакам. В таких случаях гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.


    Хромосомная теория наследственности

    Важным этапом в развитии генетики стало создание в начале ХХ в. американским ученым Т. Х. Морганом хромосомной теории наследственности. Ее основные положения таковы.

    ¦ Гены располагаются в хромосомах в линейном порядке в определенной последовательности; каждый ген занимает определенное место (локус) в хромосоме.

    ¦ В гомологичных хромосомах аллельные гены занимают одно и то же место.

    ¦ В результате удвоения хромосом происходит удвоение генов.

    ¦ Гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления.

    ¦ Число групп сцепления соответствует гаплоидному набору хромосом и постоянно для каждого вида.

    ¦ Нарушение сцепленного наследования признаков может быть результатом кроссинговера. (Кроссинговер – от англ. crossingover – взаимный обмен участками парных хромосом, что приводит к перераспределению (рекомбинации) сцепленных генов.)

    ¦ Один ген может определять один или несколько признаков; также возможно и противоположное явление, когда несколько генов определяют развитие одного признака.

    ¦ Гены относительно стабильны, но подвлиянием факторов внешней среды способны к мутациям.

    Существенным достижением генетики является выявление механизмов наследования пола. Важнейшая роль в генетическом определении пола принадлежит хромосомному набору зиготы. Так, у человека 23 пары хромосом, из них 22 пары одинаковы как у женского, так и у мужского организма, а одна пара различна. Это половые хромосомы.

    У женщин половые хромосомы одинаковы, их называют Х-хромосомами, а у мужчин различны: одна Х-хромосома, другая – У-хромосома. Женские половые клетки (яйцеклетки) одинаковы, они несут по Х-хромосоме. Мужские половые клетки (сперматозоиды) различаются по наличию половых хромосом Х или У).

    Пол человека закладывается в момент оплодотворения, когда хромосомные наборы половых клеток объединяются. Решающую роль в этом играет У-хромосома.

    В хромосомах располагается наследственный материал организма – дезоксирибонуклеиновая кислота (ДНК). Молекула ДНК состоит из двух полимерных (образованных повторяющимися элементами – мономерами) цепей, закрученных в спираль. Цепи построены из множества мономеров четырех видов – нуклеотидов.

    Наследственная информация кодируется в молекуле ДНК благодаря сочетанию трех нуклеотидов – триплетов. Каждый триплет соответствует одной аминокислоте в синтезируемом белке, который отвечает за развитие определенного признака. В передаче генетической информации от родителей потомству большое значение имеют разные типы рибонуклеиновой кислоты (РНК): транспортная, информационная и рибосомная.


    Изменчивость

    Наследственность как свойство живой материи тесно связана с противоположным свойством – изменчивостью.

    > Изменчивость – это способность живых организмов приобретать новые признаки.

    Различают наследственную (генотипическую) и ненаследственную (модификационную) изменчивость.

    Ненаследственная изменчивость возникает под влиянием тех или иных факторов внешней среды и характеризуется:

    ¦ групповым характером изменений;

    ¦ соответствием возникших изменений действию определенного фактора среды;

    ¦ изменениями, которые могут развиваться в определенных пределах (норма реакции).

    Наследственная изменчивость связана с изменением генотипа и сохраняется в ряду поколений. Различают мутационную и комбинативную наследственную изменчивость.

    Мутационная изменчивость (или мутации) представляет собой спонтанные скачкообразные изменения генетического материала, возникающие вследствие нарушений в структуре генов или хромосомы. Мутации могут быть полезными или вредными для организма. Частота мутаций в естественных условиях мала (примерно одна мутация на 200 тыс. генов). Однако влияние некоторых факторов среды существенно увеличивает число мутаций. К таким факторам, или мутагенам, относятся: ионизирующее излучение, температура, электромагнитные поля, некоторые химические вещества.

    Мутации повышают генетическое разнообразие внутри популяции или вида, так как поставляют материал для естественного отбора и образования новых видов. Таким образом, положительные мутации, встречающиеся крайне редко, лежат в основе эволюционного процесса.

    Комбинативная изменчивость связана с перестройкой структуры хромосомы, порядком расположения генов (рекомбинацией), при этом сами гены не изменяются.


    Генетическая и клеточная инженерия

    Возникновение генетической (генной) инженерии связано с созданием технологии выделения генов из ДНК и методики размножения нужного гена естествоиспытателем П. Бергом (1972 г., США). Внедрение в живой организм чужеродной генетической информации, генетическое манипулирование с целью изменения существующих и создания новых генотипов составляют одну из самых перспективных актуальных задач генной инженерии.

    На основе генной инженерии возникла новая отрасль фармацевтической промышленности, представляющая собой перспективную ветвь современной биотехнологии – микробиологический синтез. С помощью методов генной инженерии получены клоны многих генов, инсулин, гистоны, коллаген и глобин мыши, кролика и человека, пептидные гормоны и интерферон, которые используют в лечебной практике.

    Развитие генной инженерии делает возможным создание новых генотипов сельскохозяйственных растений и животных, для которых характерно отсутствие определенных болезней и увеличение продуктивности.

    Методы генной инженерии широко применяются в медицине, фармакологии, микробиологии. Например, с помощью молекулярных проб (фрагментов ДНК) можно определить зараженность донорской крови вирусом СПИДа.

    Разработаны генные технологии улучшения вакцин и создания новых вакцин. Генетики ведут исследования по генетической модификации свойств микроорганизмов, необходимых для сыроварения, виноделия, хлебопечения, производства кисломолочных продуктов.

    В сельском хозяйстве используют модифицированные микробы для борьбы с вредными вирусами, микробами и насекомыми.

    Клеточная инженерия занимается генетическими манипуляциями с отдельными клетками или группами клеток. К достижениям клеточной инженерии можно отнести методику оплодотворения в пробирке яйцеклетки с последующей имплантацией ее зародышей в матку. В настоящее время в мире насчитывается десятки тысяч «детей из пробирок».

    Методы клеточной инженерии применяются в животноводстве при выведении животных с определенными, полезными для человека качествами. В данном случае в яйцеклетки подопытных животных внедряют участки молекул ДНК, изменяя генотип особи.

    В растениеводстве с целью уменьшить сроки размножения и значительно увеличить число новых экземпляров используют клональное микроразмножение (получение растительного организма из одной клетки).

    Однако необходимо отметить и негативный аспект развития генной и клеточной инженерии: становится реальной возможность получения новых патогенных вирусов и создания новых видов бактериологического оружия, что не только ведет к дестабилизации и напряженности отношений между странами, но и ставит под угрозу благополучие человеческой цивилизации.

    В 1997 г. в печати появилась информация о том, что шотландский ученый Я. Вильмут разработал методику клонирования млекопитающих, в результате чего появилась клонированная овечка Долли. Было проведено 236 опытов, из которых только один оказался успешным – родилась овца, несущая весь генотип матери.

    После этого все чаще стали возникать дискуссии по проблеме клонирования человека. Действительно, технологии генной инженерии приближаются к решению этой задачи. Но следует помнить, что клонирование человека вызовет целый ряд этических, юридических и религиозных проблем, среди которых наиболее острыми будут, вероятно, следующие:

    ¦ подрыв нравственных ценностей человечества;

    ¦ неблагоприятное влияние на социальную и биологическую устойчивость человеческой популяции;

    ¦ возможное зарождение цивилизации с иными нравственными критериями (или их отсутствием);

    ¦ появление криминальных объединений исследователей, использующих достижения генной инженерии в противоправных целях.

    Таким образом, нравственные и социальные аспекты использования достижений генетики в интересах человека требуют широкого обсуждения, внимания и общественного контроля.

    Вопросы для самопроверки

    1. Почему электромагнетизм является атрибутом существования живой материи?

    2. Что означает эволюционно-синергетический подход в описании природы?

    3. В чем сущность самоорганизации в природе в целом и в живой материи в частности?

    4. Какова роль синергетики для современного миропонимания?

    5. Назовите основные свойства самоорганизующихся систем.

    6. Дайте понятие бифуркационного дерева как модели эволюции природы, человека, общества.

    7. Дайте определение жизни с точек зрения различных ученых. Назовите отличия живой материи от неживой.

    8. Охарактеризуйте структурные уровни организации живой материи.

    9. Сформулируйте основные гипотезы происхождения жизни на Земле.

    10. Назовите основные этапы происхождения жизни по А. И. Опарину.

    11. Охарактеризуйте клетку как элементарную единицу живого.

    12. Назовите основные положения эволюционной теории Ч. Дарвина. Чем отличается синтетическая теория эволюции от дарвинской?

    13. Что такое эволюционная картина мира и глобальный эволюционизм?

    14. Дайте определения наследственности и изменчивости.

    15. Что определяют понятия «наследование», «ген», «геном», «генофонд»?

    16. Что представляют собой генотип и фенотип? Почему принято считать, что генотип определяет фенотип?

    17. Дайте определение генетического кода и перечислите его свойства.

    18. Перечислите основные принципы гибридологического анализа.

    19. Какие признаки называются доминантными, а какие – рецессивными?

    20. Какие организмы называются гомозиготными, а какие – гетерозиготными?

    21. Дайте современную формулировку законов Менделя.

    22. В чем состоят особенности генетики человека? Перечислите основные методы генетики человека.







     


    Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх