|
||||
|
Глава 2 Переворот
Историк науки Томас Кун рассказывает о занимательном эксперименте, проведенном двумя психологами в 1940-х годах. Испытуемым предоставили немного времени, чтобы взглянуть на игральные карты (причем в данный временной промежуток каждому показывали лишь одну карту), а затем попросили описать увиденное. Но в опыте заключалась небольшая хитрость: некоторые из карт были особенными; например, шестерка пик имела красную масть, а дама бубен — черную. Пока испытуемым давали совсем мало времени, чтобы разглядеть карты, все шло как по маслу. Ответ на вопрос следовал незамедлительно, и люди совершенно не замечали уловки экспериментаторов. Посмотрев на красную шестерку пик, они определяли ее как шестерку червей или шестерку пик. Когда же время демонстрации карт увеличили, испытуемые засомневались. Им стало понятно, что с картами что-то не так, но что именно — они сообразить не могли. Как правило, они отвечали, что видели нечто странное, что-то вроде черного сердца с красной каймой. В конце концов, получив возможность хорошенько рассмотреть карту, большинство разгадало, в чем подвох, и сыграло бы партию без ошибок. Однако некоторые участники опыта, так и не раскрыв обмана, совершенно потерялись. Это причинило им самую настоящую боль. «Какой бы ни была эта масть, я не могу ее определить, — жаловался один. — То, что мне сейчас показали, вообще не похоже на игральную карту. Я не знаю, какого цвета изображение, и не уверен, пики это или черви. Сейчас я уже не могу в точности сказать, как выглядят пики… О Господи!» Профессиональные исследователи, схватывающие смутные, быстро мелькающие картины жизни природы, не отличаются особой уязвимостью, не поддаются страданиям и смятению, сталкиваясь лицом к лицу со странным. Подмеченные ученым странности, меняя представления об объекте, двигают вперед науку. Нечто подобное, с точки зрения Куна, происходит и с историей хаоса. В 1962 г., когда появились первые публикации этого историка, его взгляды на процесс познания, на развитие науки были столь же язвительны, сколь и восторженны и подливали масла в огонь дебатов. Кун весьма скептически отзывался о традиционных воззрениях на науку, о том, что прогресс в этой области якобы совершается за счет накопления знаний, дополнения старых открытий новыми, возникновения новых теорий под влиянием вскрытых экспериментами фактов. Он опровергал представление о науке как об упорядоченном процессе поиска ответов на заданные вопросы, подчеркивая разницу между тем, что предпринимают ученые при исследовании вполне уместных и ясно очерченных вопросов внутри своих дисциплин, и исключительным, неординарным мышлением, порождающим революции. Не случайно Кун ставит ученых ниже истинных рационалистов. По представлениям Куна, обычная наука состоит преимущественно из действий «присваивающего» характера. Экспериментаторы оттачивают методику постановки опытов, проделанных уже не один раз до них. Теоретики то добавят кирпичик в стену познания, то слегка изменят ее контур. И вряд ли дела могут обстоять иначе! Если бы все ученые начинали с нуля, подвергая сомнениям базовые предположения, то им стоило бы огромных трудов достичь того уровня, который необходим для выполнения действительно полезной работы. Во времена Бенджамина Франклина горстка энтузиастов в попытке постичь природу электричества могла — и должна была — выдвигать свои собственные принципы. Один из этих ученых считал притяжение наиболее важным действием электричества, принимая последнее за своего рода «испарение», исходящее от всевозможных субстанций. Второй полагал, что электричество подобно жидкости, передаваемой материалом-проводником. И все они без особых затруднений объяснялись как с обывателями, так и между собой, поскольку тогда не выработался еще специальный язык для описания объекта исследования. Исследователь XX века, изучающий динамику жидкости, не смог бы совершить открытия, не имей он в своем распоряжении специальной терминологии и математического аппарата. Но взамен, сам того не ощущая, он жертвует свободой познания, отказывается от постижения первооснов своей науки. Кун видит в обычной науке средство решения проблем, с которыми студенты сталкиваются, впервые открыв учебник. Проблемы эти сопутствуют большинству ученых в магистратуре, при работе над диссертацией, при написании статей для научных сборников — необходимого условия успешной академической карьеры. «В условиях повседневности ученого-исследователя нельзя назвать новатором. Он лишь решает головоломки. И те вопросы, над которыми он работает, могут быть, по его же мнению, сформулированы и решены в рамках существующей научной традиции», — пишет Кун. Но случаются и перевороты, когда из пепла отжившей, загнавшей себя в тупик науки восстает новая. Зачастую такая революция носит междисциплинарный характер — важнейшие открытия нередко делаются исследователями, переступившими границы своей науки. Занимающие их вопросы с точки зрения здравого смысла не укладываются в рамки научного познания, поэтому-то предложенные революционерами тезисы отклоняют, и в публикации статей им отказывают. Да и сами ниспровергатели не уверены, что смогут распознать решение, даже увидев его. Но они готовы рискнуть карьерой! Горстка вольнодумцев, которые работают в одиночку, не способны даже самим себе внятно объяснить направление своих изысканий и опасаются раскрыть их сущность коллегам — таков романтический образ, рисуемый Куном. Этот образ встречался ему не раз в реальной жизни при исследовании хаоса. Ученые, первыми обратившие внимание на феномен хаоса, могли многое поведать о постигших их разочарованиях и даже об открытой враждебности, с которой они подчас сталкивались. Выпускников убеждали не писать диссертаций по неизвестной дисциплине, о которой их руководителям мало что известно, — подобное ляжет темным пятном на всю карьеру. Исследователь, занимавшийся физикой элементарных частиц, прослышав о новой математике, начал использовать в своей работе сие чудесное, хотя и весьма мудреное изобретение, однако делал это втайне от коллег. Почтенные профессора, шагнув за пределы общепринятых научных изысканий и ощутив непонимание, а зачастую и просто негодование собратьев по цеху, пугались возрастного кризиса. Но испуг отступал перед искусом пережить волнение, порождаемое действительно неизведанным. Даже люди, не принадлежащие к академическим кругам, но воспринимавшие перемены с энтузиазмом, обнаруживали в себе это чувство. Для Фримена Дайсона, в 70-е годы работавшего в Институте перспективных исследований, соприкосновение с хаосом стало «чем-то вроде электрического шока». Другие же ученые просто понимали, что впервые за всю свою сознательную жизнь в науке они становятся свидетелями настоящего переворота в мышлении. Специалисты, сразу признавшие за хаосом право на существование, бились над тем, как облечь свои открытия и размышления в подходящую для публикаций форму, поскольку работа велась на стыке дисциплин. Она казалась слишком абстрактной для физики и чересчур экспериментальной для математики. Препятствия на пути распространения новых веяний и яростное сопротивление традиционных школ кое-кто воспринял как свидетельство истинно революционного характера зарождавшейся науки. Поверхностные идеи усваиваются легко; но те, что требуют переменить взгляд на мир, вызывают враждебность. Джозеф Форд, физик из Технологического института Джорджии, нашел подтверждение этого у Толстого: «Я уверен, что большинство людей, в том числе и те, что свободно чувствуют себя, разрешая чрезвычайной трудности вопросы, редко могут принять даже самую простую и очевидную истину, если она обяжет их согласиться с ложностью результатов своей работы — выводов, с восторгом представленных в свое время коллегам, с гордостью описанных слушателям, вплетенных, нить за нитью, в жизнь самих их создателей». Многим представителям основных направлений науки новая дисциплина виделась весьма смутно. Некоторые, особенно исследователи динамики жидкостей, придерживавшиеся традиционных воззрений, отзывались о ней довольно резко. На первых порах раздавались лишь отдельные голоса в защиту хаоса и его феномен базировался в основном на математическом аппарате, казавшемся громоздким, да и просто сложным. Однако адептов хаоса становилось все больше, и не все факультеты устраивали гонения на еретиков — некоторые, наоборот, их привечали. Не все научные журналы взяли за неписаное правило не публиковать работы о хаосе — иные издания печатали исключительно статьи, посвященные новой дисциплине. «Хаотистов» (их называли и так) стали выдвигать на получение престижных ежегодных стипендий и премий. К середине 80-х годов расслоение в академической среде привело к тому, что приверженцы хаоса заняли весьма значительные административные посты в высших учебных заведениях. Учреждались профильные центры и институты, специализирующиеся на «нелинейной динамике» или «сложных системах». Хаос сделался не только объектом, но и методом изучения, не просто сводом верований, но и средством продвижения науки вперед. Он породил новые приемы использования компьютерной техники — возвеличил скромные терминалы, которые обеспечивают гибкую связь человека с компьютером и являются более эффективными, чем сверхбыстродействующие модели «Сray» или «Cyber». Для исследователей хаоса математика стала экспериментальной наукой, компьютеры заменили собой лаборатории, с шеренгами пробирок и микроскопами. Графические изображения приобрели первостепенную важность, что дало повод одному из хаотистов съязвить: «Математик, не опирающийся в своей работе на зрительные образы, подобен мазохисту… Как может он видеть соотношение между разными видами движения? Неужели это постигнешь интуитивно?» Некоторые ученые занимались хаосом, но отрицали его революционный характер. Другие же, наоборот, говорили о перевороте в мышлении. Стиль ранних публикаций о хаосе вызывал в памяти времена Франклина, когда пионеры науки формировали свои первые постулаты. Как замечает Кун, совокупность знаний, являющаяся отправной точкой для исследовательской работы, воспринималась авторитетными научными дисциплинами без доказательств. Так уж повелось, что из боязни наскучить коллегам многие начинали и заканчивали свои изыскания, не придав их огласке. Напротив, статьи о хаосе начиная с 70-х годов звучали подобно Евангелию. От предисловия до заключения это были манифесты, призывающие ученых действовать, работать, изучать… Результаты кажутся нам одновременно и захватывающими и вызывающими. Теоретическая картина перехода от плавного перемещения к турбулентности только начинает вырисовываться. Сущность хаоса математически постижима, и никто не отрицает, что именно он сейчас предвещает будущее. Но чтобы принять последнее, необходимо отречься почти от всего в прошлом. Новые надежды, непознанные направления, свежее видение… Революции не происходят исподволь. Одна точка зрения на природу заменяется другой. Новые проблемы предстают в ином свете, а уже известные признаются впервые. Происходит нечто такое, что можно сравнить с полным техническим переоснащением целой отрасли промышленности для выпуска новой продукции. Говоря словами Томаса Куна, «научное сообщество словно оказалось вдруг на другой планете, где изученные уже предметы видятся в новом свете и появляются совсем незнакомые». Зарождавшаяся наука обратила свое внимание на маятник, символ классической механики, образец ограниченного движения, свободно качающийся на конце стержня отвес. Что может быть дальше от буйства турбулентности? Предания прочно связали образ Архимеда с ванной, Ньютона — с яблоком, Галилея — с лампадой, мерное качание которой подсказывало подсознанию ученого новые идеи. Изохронность маятника позволила Христиану Гюйгенсу применить его в часах и поставить западную цивилизацию на путь, с которого нет возврата. В огромном зале парижского Пантеона при помощи маятника высотой с 20-этажный дом Фуко доказал факт вращения Земли. Маятники разных форм и размеров — важная деталь любых, в том числе и наручных часов, кроме кварцевых. В пространстве, где нет трения, периодические движения совершают, перемещаясь по орбитам, небесные тела. На планете Земля упорядоченное колебание присуще маятникам или близким к ним устройствам. Работа электронных схем в основном описывается уравнениями, почти аналогичными тем, что отображают качание отвеса, — электронные колебания происходят в миллионы раз чаще, однако природа их та же. Тем не менее к XX веку классическая механика стала не более чем учебным предметом и элементом рядовых инженерных проектов, а маятники украсили научные музеи и сувенирные магазинчики аэропортов, приняв обличье вращающихся «космических шаров» из пластика. Ими уже не интересовался ни один серьезный физик. Все же маятник смог вновь удивить ученых, став пробным камнем для экспериментов, каковым его и считал Галилей. Аристотель, наблюдая за маятником, видел в нем груз, который тщетно стремится достигнуть земли и качается взад и вперед потому, что стержень ограничивает его движение. Современному ученому сказанное покажется наивным. Он, этот ученый, связан классическими представлениями о движении, инерции, силе тяжести. Ему довольно сложно оценить господствовавшие некогда убеждения, которые сформировались под влиянием Аристотелева понимания маятника. По Аристотелю, движение тел есть не результат действия силы, а скорее изменения, подобные тем, что происходят по мере роста человека, — падающий груз просто стремится к своему естественному состоянию, которое достижимо, если объект предоставлен самому себе. Галилео Галилей, изучая маятник, подметил некую упорядоченность, доступную измерениям; чтобы объяснить ее, необходимо было мыслить совершенно по-новому, воспринимая объекты в движении. Преимущество Галилея над древними греками заключалось вовсе не в том, что он получил более точные данные; напротив, его замысел — приставить к маятнику наблюдателей и подсчитать число колебаний за сутки — не самый изящный научный ход. Галилей увидел упорядоченность в движении маятника потому, что был знаком с теорией, предсказавшей данный факт. Он понял то, чего не постиг Аристотель: движущийся объект стремится продолжать движение, а изменения скорости или направления объясняются лишь вмешательством внешней силы, например силы трения. Галилей настолько подпал под власть своих умопостроений, что увидел упорядоченность, которой не было. По его убеждению, маятник определенной длины не только показывает точное время, но и обнаруживает независимость периода колебаний от угла отклонения. Проще говоря, маятник с большим углом колебаний проходит больший путь, но совершает его быстрее. Другими словами, период колебаний маятника не зависит от его амплитуды. «Если два человека начнут считать число колебаний, и один будет считать те, что имеют широкий угол, а второй — колебания с небольшим углом, обнаружится, что после десятков, даже сотен движений маятников их данные будут полностью совпадать, не различаясь и на доли единицы». Галилей вывел это утверждение эмпирическим путем. Однако, будучи подкреплено теорией, оно приобрело такую убедительность, что до сих пор входит прописной истиной в большинство курсов физики высших школ. Тем не менее данный постулат неверен: упорядоченность, замеченная Галилеем, лишь приблизительна, так как изменяющийся угол движения отвеса привносит в уравнения едва заметный элемент нелинейности. При малых амплитудах погрешность почти не проявляется, зато в опыте, подобном тому, что описан Галилеем, она налицо и даже поддается измерению. Хотя небольшими эффектами нелинейности можно пренебречь, экспериментаторы быстро осознали, что живут в несовершенном мире. Со времен Галилея и Ньютона поиски упорядоченности в опытах отличались особой основательностью. Любой экспериментатор ищет неизменных величин, но это значит пренебрегать той крошечной долей беспорядочного, что вмешивается в четкую картину результатов. Если химик из одного эксперимента выводит, что постоянное соотношение двух веществ составляет 2,001, из другого — 2,003, а из третьего уже 1,998, весьма неосмотрительным с его стороны будет не подыскать теорию, объясняющую, что истинное соотношение равно два к одному. Стремясь получить корректные результаты, Галилей также не придавал значения известным ему нелинейным эффектам — трению и сопротивлению воздуха. Последнее является весьма досадным осложнением, той палкой в колесе экспериментатора, которую необходимо убрать, чтобы постичь сущность новой механики. Падает ли птичье перышко так же быстро, как камень? Как показывает опыт, скорость падения их различна. Легенда о том, как Галилео Галилей бросал шары с вершины Пизанской башни, — это история об интуитивном постижении некоего идеального мира, где упорядоченность можно отделить от погрешностей опыта. Отделив действие силы тяжести на тело определенной массы от действия сопротивления воздуха — что было блестящим достижением научной мысли, — Галилей вплотную приблизился к сути инерции и измерению количества движения. Все же в реальном мире маятники ведут себя как описано в парадигме Аристотеля: они останавливаются. Закладывая основу грядущей смены парадигм, ученые бились над тем, что принимали за пробел в знаниях о простых системах вроде маятника. К началу XX века диссипативные процессы, к примеру трение, были уже изучены и учитывались в уравнениях. На занятиях студентам рассказывали, что нелинейные системы, как правило, не имеют решения, и это вполне соответствовало истине. Зато утверждение, что эти системы большей частью представляют собой исключения из правил, отнюдь не являлось правдой. Поведение целого класса движущихся объектов: маятников, колеблющихся пружин, струн и гибких стержней — описывается классической механикой. К жидкостным и электрическим системам применили сходный математический аппарат, но почти никто во времена безраздельного господства «классики» не подозревал, что стоит только уделить нелинейным элементам должное внимание — и обнаружится: в динамических системах затаился хаос. Физик не способен до конца проникнуть в тайны турбулентности, не поняв феномена маятника. До конца осмыслить эти тайны в первой половине XX века было попросту невозможно. По мере того как хаос стал сводить воедино изучение различных систем, динамика маятников расширялась, вбирая в себя поведение даже таких продуктов высоких технологий, как лазеры и сверхпроводники Джозефсона. Ход некоторых химических реакций подобен поведению маятника. Нечто похожее прослеживается и в биении сердца. По словам одного ученого, динамика маятника таит в себе новые возможности для «психологии и психиатрии, экономического прогнозирования и, возможно, даже для социальной эволюции». Рассмотрим качели на детской площадке. Они набирают ускорение, устремляясь вниз, а по мере взлета вверх их скорость падает; часть энергии постоянно утрачивается из-за трения. Допустим, что качели приводит в движение некий механизм, подобный часовой пружине. Как подсказывает нам интуиция, в какой бы точке ни началось движение, оно станет постоянным. Качели будут раскачиваться взад и вперед, поднимаясь каждый раз на одну и ту же высоту. Такое возможно. Однако, сколь ни удивительно, качели могут колебаться и весьма странным образом: сначала взлетать высоко, затем низко, никогда не повторяя тот рисунок движения, что наблюдался прежде. Поразительно неустойчивое поведение порождается нелинейностью потока энергии на входе и выходе этого простейшего осциллятора. Амплитуда колебаний уменьшается, затем увеличивается. Уменьшается — потому что трение стремится остановить движение, увеличивается — из-за постоянно возникающих внешних толчков. Но даже тогда, когда замедляющаяся, а затем ускоряющаяся система, казалось бы, находится в равновесии, это лишь видимость. Мир полон таких систем, начиная с атмосферной, которую «заглушает» трение перемещающихся воздушных масс, воды, рассеивание тепла в открытый космос и «приводит в движение» постоянный приток солнечной энергии. Впрочем, непредсказуемость поведения маятников не была причиной, подвигшей физиков и математиков снова всерьез взяться за их изучение в 60-70-х годах. Непредсказуемость лишь подогрела интерес к проблеме. Исследователи динамики хаоса обнаружили, что неупорядоченное поведение простых систем является процессом созидания некой сложности. Перед взором исследователей представали причудливые объекты, устойчивые и не совсем, имеющие пределы и безграничные, но всегда обладавшие очарованием жизни. Именно поэтому ученые, словно дети, играли в эти игрушки. Играли не только они одни. На прилавках сувенирных магазинов появилась забавная безделица, получившая название «космические шары» или «небесная трапеция». Она представляет собой два шарика, закрепленных на противоположных концах стержня, который, в свою очередь, подобно поперечине буквы Т, крепится на свободном конце маятника. Центром тяжести маятника служит третий шар, более массивный, чем первые два. Качание маятника сопровождается свободным вращением верхнего стержня. Внутри у всех трех шариков находятся маленькие магниты. Однажды запустив устройство, вы наблюдаете, как оно работает. В его основание встроен электромагнит с автономным питанием, и всякий раз, как нижний шарик приближается к основанию, игрушка получает легкий магнитный толчок. Временами устройство качается устойчиво и ритмично, но порой его бесконечно изменчивое движение напоминает хаос. Другая игрушка представляет собой сферический маятник, который, в отличие от обычного, качается в любом направлении, не ограничиваясь двумя. В основание устройства помещены несколько небольших магнитов, притягивающих металлический отвес. В момент остановки маятника отвес прилипает к одному из магнитов. Идея заключается в том, чтобы угадать, какой из магнитов притянет к себе отвес. Предсказать это с высокой вероятностью невозможно, даже если магнитов всего три и расположены они в вершинах треугольника. Некоторое время маятник будет качаться между вершинами А и В, потом движение перейдет на сторону ВС, и в тот момент, когда отвес, казалось бы, должен притянуться к вершине С, он вновь перепрыгивает к вершине А. Допустим, ученый, изучающий поведение такой игрушки, составит что-то наподобие карты. Запуская маятник, он выберет точку начала движения, следующую точку обозначит красным, синим или зеленым цветом в зависимости от того, каким из магнитов будет притянут отвес. Каким в итоге получится изображение? Можно ожидать, что на нем проступят области сплошного красного, синего и зеленого цветов — там, где отвес почти наверняка притянется к определенному магниту. Но на рисунке видны и такие зоны, где цвета переплетаются бесконечно сложно. С какого расстояния ни рассматривай рисунок, как ни увеличивай изображение, синие и зеленые точки всегда будут соседствовать с красными. Следовательно, движение отвеса на практике предсказать невозможно. Ученые, занимающиеся динамикой, полагают, что описать поведение системы с помощью уравнений значит понять ее. Что может лучше уравнений передать существенные черты системы? Уравнения, передающие движение качелей или рассмотренных выше игрушек, устанавливают связь между углом колебаний маятника, скоростью, преодолеваемым трением и движущей силой. Однако добросовестный исследователь обнаруживает, что он не в состоянии ответить на простейшие вопросы о будущих состояниях системы в силу того, что в уравнениях присутствует крошечная доля нелинейности. С помощью компьютера можно смоделировать эти состояния, бегло просчитав каждый цикл. Однако моделирование имеет свои минусы: едва заметная неточность с каждым шагом расчета нарастает, поскольку системе свойственна «сильная зависимость от начальных условий». Полезный сигнал быстро теряется в шумах. Но теряется ли на самом деле? Открыв непредсказуемость, Лоренц одновременно обнаружил и некую регулярность. Другим исследователям также удавалось нащупать намек на структурирование в беспорядочном, на первый взгляд, поведении изучаемых систем. Тем, кто не отмахнулся от исследования маятника как объекта, чересчур простого для изысканий, удалось разглядеть весьма интригующие детали. Ученые осознали, что, хотя основное в механизме колебаний маятника уже постигнуто физикой, это знание невозможно применить для прогнозирования долговременного поведения системы. Мелкие детали были уже ясны, а поведение маятника в крупных временных масштабах все еще представлялось загадкой. Рушился традиционный, локальный подход к исследованию систем, подразумевавший рассмотрение каждого их элемента в отдельности, а затем соединение последних. В отношении маятников и жидкостей, электронных схем и лазеров метод познания, основанный на составлении уравнений, уже не оправдывал себя. Он не отвечал требованиям времени. В 60-х годах дорогой Лоренца шли некоторые другие исследователи, среди них французский астроном, изучавший орбиты галактик, и японский инженер-электронщик, работавший с электронными микросхемами. Тем не менее первая обдуманная и согласованная попытка постигнуть суть отличия глобального поведения от локального исходила от математиков. В числе последних был Стивен Смэйл из Калифорнийского университета в Беркли, уже известный своими решениями наиболее запутанных проблем многомерной топологии. Когда один из молодых физиков как бы между прочим поинтересовался у Смэйла направлением его деятельности, то в ответ последовало всего лишь одно слово, которое просто ошеломило юношу, показавшись ему чистой воды абсурдом. Смэйл изучал осцилляторы! Все колеблющиеся системы: маятники, струны, электросхемы — представляют собой ту область знаний, с которой физики «разделываются» еще в самом начале учебы по причине ее простоты. С чего бы прославленному математику тратить время на элементарную физику? И лишь несколько лет спустя молодой человек осознал, что Смэйла интересовали нелинейные хаотические осцилляторы. Этот математик видел вещи, недоступные физикам. Вначале Смэйл, использовавший чисто математические методы, предполагал, что практически все динамические системы в большинстве случаев начинают вести себя вполне понятно и предсказуемо, но оказался не прав. Дела обстояли отнюдь не так просто, и вскоре он это понял. Смэйл являлся одним из тех математиков, которые не только решают проблемы, но и подкидывают их другим. Интуиция, тонкое понимание истории и природы подсказывали ему, что появилось множество новых областей знания, достойных внимания математика. Подобно удачливому бизнесмену, Смэйл оценивал возможные риски и хладнокровно планировал свою стратегию. Словно гаммельнский крысолов, он обладал способностью очаровывать и увлекать за собой людей; куда шел Смэйл, туда устремлялись многие. Не ограничиваясь занятиями математикой, он в самом начале войны во Вьетнаме организовал вместе с Джерри Робином акцию «Международные дни протеста», которая преследовала цель добиться запрета на передвижение армейских составов через Калифорнию. В 1966 г., когда Комиссия по антиамериканской деятельности пыталась вызвать его на судебные слушания, Смэйл уехал на Международный конгресс математиков в Москву. Там он был удостоен медали Филдза, самой престижной награды в области математики. История, случившаяся летом 1966 г. в Москве, стала одной из легенд, ореол которых окружил этого удивительного человека. На конгрессе, где собралось пять тысяч математиков, кипели эмоции, разгорались политические страсти, составлялись разнообразные обращения и петиции. Ближе к концу Смэйл, по просьбе журналиста из Северного Вьетнама, провел пресс-конференцию прямо на широких ступенях Московского университета. Свою пламенную речь он начал с осуждения американской интервенции во Вьетнаме, но, заметив радостные улыбки чиновников принимавшей стороны, обрушился и на предосудительное поведение советских войск в Венгрии, ущемление гражданских свобод в Советском Союзе. Вскоре после этого Смэйл был вынужден объясняться с советскими «математиками в штатском», а возвратясь в Калифорнию, узнал, что Национальный фонд науки лишил его гранта. Медали Филдза Смэйл был удостоен за выдающиеся исследования в области топологии — раздела математики, который начал развиваться в XX веке, достигнув особого расцвета в 50-е годы. Предметом топологии являются те свойства и качества, которые остаются неизменными (или инвариантными) при деформации геометрических фигур путем скручивания, сжатия или растяжения. Очертания и величина фигур — квадратные они или круглые, большие или маленькие — для топологии не столь важны, так как могут быть изменены деформацией. Для тополога представляет интерес другое: есть ли на поверхности фигуры разрывы или отверстия, не имеет ли она форму узла. Предмет исследования топологии не одно-, дву- и трехмерные поверхности, как в Евклидовой геометрии, а многомерные пространства, не поддающиеся отчетливому визуальному представлению. Объекты топологии подобны геометрическим телам на растягивающейся листовой резине, и рассматривает она не столько количественные, сколько качественные характеристики, т. е. раскрывает структуру в целом, не вдаваясь в измерение ее параметров. Смэйл разрешил одну из основных, имеющих длинную историю задач топологии — так называемую проблему Пуанкаре для пятимерного пространства и пространств большей размерности. Благодаря этому он встал в один ряд с выдающимися собратьями по ремеслу. Тем не менее в 60-х годах Смэйл, оставив топологию, вступил на неизведанную почву — занялся динамическими системами. Возникновение топологии и теории динамических систем восходит еще ко временам Анри Пуанкаре, который считал эти дисциплины двумя сторонами одной медали. На рубеже веков Пуанкаре, последним из великих математиков, применил геометрию для описания законов движения в физической. Вселенной. Пуанкаре раньше всех осознал проблему хаоса. Его работы содержат смутные указания на возможную непредсказуемость, столь же трудноуловимую, как и в исследованиях Лоренца. Однако после смерти французского математика топологию ожидал расцвет, а динамические системы — забвение. Само понятие вышло из употребления. Предмет, на который обратил свое внимание Смэйл, назывался теорией дифференциальных уравнений. Последние использовались для описания изменений системы во времени, причем, в согласии с господствующей традицией, объекты рассматривались «локально». Подразумевалось, что инженер или физик примет во внимание лишь один набор параметров, передающих движение в данный момент времени. Смэйл, как и Пуанкаре, стремился исследовать явления в глобальном масштабе, желая постигнуть все богатство возможностей сразу. Любая совокупность уравнений, описывающих динамическую систему (в частности, уравнения Лоренца), позволяет установить определенные начальные параметры. В случае с тепловой конвекцией, например, один из заданных параметров характеризует вязкость жидкости. Значительные изменения исходных данных могут повлечь за собой ощутимые перемены в системе, скажем, расхождение между пребыванием системы в стабильном состоянии и ее периодическими колебаниями. Однако физики предположили, что слабые изменения способны вызвать лишь незначительное расхождение в числовых данных, но никак не в качественном поведении системы. Увязав топологию и динамические системы, ученые получили бы возможность использовать некую форму для наглядного представления всего разнообразия моделей поведения систем. Если система сравнительно проста, эта форма очертаниями может напоминать изогнутую поверхность. Сложные системы обладают множеством измерений. Точка на поверхности описывает состояние системы в определенный момент времени. По мере развития системы во времени точка передвигается через всю поверхность, описывая на ней своеобразную траекторию. Легкий изгиб формы соответствует изменению параметров системы, повышению вязкости жидкости или небольшому увеличению движущей силы маятника. Приблизительно одинаковые формы свидетельствуют о приблизительно одинаковом поведении. Если форма доступна зрительному представлению, систему можно решить. Когда Смэйл обратился к динамическим системам, топологией, как и вообще математикой, занимались люди, относившиеся с пренебрежением к прикладному применению математических знаний. Физика и топология — дисциплины, родственные по происхождению. Однако математики начисто забыли об этом, изучая очертания фигур ради них самих. Смэйл, будучи до мозга костей математиком, разделял общее заблуждение, полагая, впрочем, что кое-что в топологии может обогатить и физику. Того же мнения держался в начале XX века Пуанкаре. Так случилось, что первый шаг в новой области Смэйл сделал в неверном направлении. Он предложил закон, гласивший примерно следующее: система может вести себя беспорядочно, но подобное поведение не является устойчивым. Устойчивость — «устойчивость по Смэйлу», как иногда называли ее математики, — представляла собой решающее свойство. Устойчивым именовалось такое поведение системы, которое не могло измениться только в силу крохотной флуктуации одного из численных параметров. Любая система обнаруживает как упорядоченное, так и хаотичное поведение. Уравнения, которые описывают стоящий вертикально на острие грифеля карандаш, математически весьма удачно решаются, если центр тяжести карандаша располагается прямо над точкой опоры. Однако поставить карандаш в такое положение нельзя, поскольку оно нестабильно, — едва заметные колебания выводят систему из равновесия. С другой же стороны, шарик, лежащий в лунке, там и останется. Даже если его слегка потревожить, шар вернется в прежнюю позицию. Согласно гипотезе Смэйла, любое поведение системы, фактически доступное регулярному наблюдению, должно являться устойчивым, так как небольшие помехи и изменчивость в реальных системах неизбежны, а мы никогда не знаем точных параметров. Если вам необходима модель, физически реальная и одновременно противостоящая незначительным изменениям, то такая модель, по мнению большинства физиков, определенно является устойчивой. Зима 1959 г. принесла Смэйлу, находившемуся тогда в Рио-де-Жанейро, плохие новости. Вскоре после Рождества в дом, где он обитал с женой и двумя малышами, принесли письмо от коллеги. Высказанная Смэйлом догадка пролила свет на целую группу устойчивых дифференциальных уравнений, но не более того. С точки зрения Смэйла, к любой хаотичной системе можно было приближаться сколь угодно близко, используя выделенный им класс уравнений, но в этом он ошибался. В письме его коллега сообщал, что многие системы вовсе не так понятны, как представлялось Смэйлу. В доказательство автор письма приводил систему, где сосуществовали хаос и устойчивость. И эта система была вполне «крепкой»! Слегка потревожив ее, можно было заметить, как появляются непрогнозируемые черты, а ведь в реальности в любую природную систему вторгается посторонний шум. Устойчивая, но поражающая своей необычностью… Смэйл с недоверием вчитывался в строки письма, однако через некоторое время убедился в правоте коллеги. Хаос и неустойчивость — понятия, смысл которых еще не отлился в чеканные формулировки, — вовсе не синонимы. Хаотичная система вполне может демонстрировать устойчивость, если определенное ее иррегулярное качество продолжает существовать вопреки незначительным помехам, о чем наглядно свидетельствовала система Лоренца (Смэйл и услышит о ней лишь годы спустя). Открытый Лоренцем хаос при всей своей непредсказуемости являлся столь же устойчивым, как шарик в лунке. Можно добавить шум в эту систему, покачать, хорошенько разболтать ее, помешать движению внутри нее — все равно, когда возмущение уляжется и мимолетные факторы исчезнут, словно замирающее эхо в глубоком каньоне, система вновь вернется к своему прежнему беспорядочному состоянию. Локально она непредсказуема, глобально — устойчива. Реальные же динамические системы вели себя, повинуясь куда более сложному набору правил, чем можно вообразить. Пример, который содержался в адресованном Смэйлу послании, являл собой другую простую систему, открытую более тридцати лет назад, но незаслуженно забытую. Эта система — колеблющаяся электрическая цепь, по сути своей маятник, нелинейный и подвергаемый, подобно качелям, периодическому воздействию силы. Если быть еще более точным, речь шла о вакуумной лампе, сконструированной в 20-е годы голландским инженером-электронщиком Балтазаром ван дер Полем. Современный студент-физик легко разберется в поведении такого осциллятора, взглянув на экран осциллографа, но ван дер Поль, за неимением последнего, был вынужден изучать собственное изобретение, прислушиваясь к изменениям тональности звука в телефонных наушниках. Из раза в раз изменяя силу подаваемого электротока, он, к своему удовольствию, обнаружил в поведении системы некий порядок: будто взбегая по лестнице, тон «перепрыгивал» от частоты к частоте. Но однажды голландец заметил кое-что очень странное: звуки в наушниках стали иррегулярными. Изобретатель затруднялся объяснить, что происходит в лампе. Впрочем, это его не слишком беспокоило. «Порой посторонние шумы, которые мы слышим в телефонных наушниках, сигнализируют о резком переходе к более низкой частоте, — отмечал он в письме в журнал „Нейчур“. — Они носят вспомогательный характер». Ван дер Поль входил в число ученых, имевших представление о хаосе, пусть и смутное, однако он не смог бы облечь свои идеи в форму специальных терминов. Создатели вакуумных ламп считали блокирование частоты делом весьма важным. Для людей же, пытавшихся проникнуть в природу сложного, гораздо интереснее был «посторонний шум», исходивший от взаимодействия токов высокой и низкой частот. Хотя гипотеза Смэйла не подтвердилась, она дала новое направление его исследованиям сложных динамических систем. Ряд математиков по-новому оценили возможности осциллятора ван дер Поля. Смэйл приложил их выводы к неизвестной области. Единственным его осциллографом был мозг, но этот мозг довели до совершенства годы изучения топологической Вселенной. Смэйл досконально разобрался в спектре активности осциллятора, в его, по выражению физиков, фазовом пространстве. Любое состояние системы, зафиксированное в определенный момент времени, раскрывалось в одной точке фазового пространства. Все данные о положении или скорости системы содержались в координатах указанной точки. По мере изменения системы точка меняла свои координаты в фазовом пространстве, вычерчивая траекторию. Фазовое пространство простой системы, вроде маятника, вероятно, представляет собой прямоугольник. Угол колебаний маятника в заданный момент времени определяет положение точки на оси восток — запад, а его скорость — на оси север — юг. Для маятника, стабильно качающегося взад и вперед, траектория в фазовом пространстве напоминает петлю, закручивающуюся вновь и вновь, по мере того как система раз за разом проходит через те же состояния. Рис. 2.1. Построение изображений в фазовом пространстве. Традиционные временные последовательности (вверху) и траектории в фазовом пространстве (внизу) используются как два вида наглядного отображения одних и тех же данных и поведения системы в течение длительного периода времени. Первая (слева) система сходится в одной точке фазового пространства, что подразумевает стабильное состояние. Вторая периодически повторяет саму себя, образуя циклическую орбиту. Третья также обнаруживает периодическое повторение, но в более сложном, «вальсовом» ритме, демонстрируя цикл с тремя волнами. Четвертая хаотична. Вместо того чтобы наблюдать за траекторией, Смэйл сосредоточился на изучении целостного пространства в момент изменения системы, например во время увеличения движущей силы. При этом он сконцентрировал свои размышления на некой геометрической сущности, абстрагировавшись от сути физической. Смэйл анализировал топологические трансформации в фазовом пространстве, т. е. такие преобразования, как растяжение и сжатие. Иногда эти преобразования несли в себе прямой физический смысл. Так, рассеивание и потеря энергии на трение наглядно отображались тем, что очертания системы в фазовом пространстве сжимались, словно опадающий воздушный шар, сокращаясь в итоге до точки, в которой система окончательно останавливалась. Смэйл понял, что для воспроизведения всей неупорядоченности осциллятора ван дер Поля в фазовом пространстве необходимо использовать новый комплексный набор трансформаций, и быстро превратил идею о зрительном представлении глобального поведения системы в неизвестную ранее модель. Его изобретение — овладевший умами образ хаоса — представляло собой структуру, известную под названием подковы. Рис. 2.2. Подкова Смэйла. Такая топологическая трансформация заложила весьма простую основу толкования хаотичных свойств динамических систем: пространство растягивается в одном направлении, сжимается в другом, а затем перегибается. При повторении операции образуется нечто вроде структурированного беспорядка, подобного тому, который мы получаем, сворачивая пирожные из слоеного теста. Две точки, оказавшиеся рядом в конце преобразований, вначале могли находиться далеко друг от друга. Чтобы представить себе упрощенный вариант подковы Смэйла, вообразите прямоугольник, а затем совместите верхнюю и нижнюю его стороны. Получится брусок, который надо согнуть буквой «С», а потом выровнять концы, чтобы получилась подкова. Подкову нужно встроить в новый прямоугольник и повторить преобразования: сжатие, свертывание и выравнивание. Описанная выше процедура напоминает работу кондитера, который ловко растягивает сладкую жирную массу, сворачивает ее вдвое, вновь вытягивает, и так снова и снова, пока конфета не приобретет изящную продолговатую форму и сахарные завитки внутри нее не станут повторять друг друга самым причудливым образом. Смэйл создал свою подкову, минуя несколько стадий топологического преобразования. Отвлекшись от математики, можно отметить, что подкова — точный и зримый образ «сильной зависимости от начальных условий», которую Лоренц откроет несколькими годами позже. Выберите две соседние точки в начальном пространстве — и не угадаете, где именно они окажутся после сгибания и скручивания пространства. Первоначально Смэйл надеялся объяснить поведение всех динамических систем с помощью операций вытягивания и сжатия, не прибегая к сгибанию, по крайней мере к такому, которое сильно подорвало бы устойчивость системы. Однако это преобразование оказалось необходимым и дало возможность описать резкие перемены в динамическом поведении объекта. Подкова Смэйла стала первой в ряду новых геометрических форм, благодаря которым математики и физики многое узнали о движении. Это изобретение — детище топологии, а не физики — казалось несколько искусственным для прикладных целей, однако оно послужило отправным пунктом для дальнейших изысканий. В 60-е годы Смэйл создал в Беркли исследовательскую группу из молодых математиков, разделявших его взгляд на нетрадиционное изучение динамических систем. Прошло десятилетие, прежде чем результаты их работы удостоились внимания представителей других, не столь далеких от практики дисциплин. Когда это все же случилось, физики поняли, что Смэйл повернул целый раздел математики лицом к реальному миру, и заговорили о наступлении золотого века науки. «Происходит самая эпохальная смена парадигм из всех, какие я видел» — так прокомментировал происшедшее Ральф Абрахам, коллега Смэйла, впоследствии профессор математики в отделении Калифорнийского университета. «Когда я начал свою профессиональную деятельность в сфере математики в 1960 г., совсем не так давно, последняя в современном ее варианте полностью — именно полностью — отвергалась даже самыми передовыми физиками, прибегавшими в своих исследованиях к математике. Дифференциальная динамика, глобальный анализ, разнообразные виды планирования, дифференциальная геометрия — почти всё предали забвению, и это лишь через пару лет после открытий Эйнштейна, высоко ценившего математическую науку! Можно сказать, что брак между математикой и физикой завершился разводом уже в 30-х годах — ученые двух областей, ничего не обсуждая между собой, презирали друг друга. Матфизики (а встречались и такие) не позволяли своим выпускникам посещать занятия математиков: Оставьте математику! Мы сами научим вас всему, что нужно знать. Они лишь извратят ваше мышление! Тогда шел 1960 год. Через восемь лет ситуация коренным образом изменилась». Физики, астрономы, биологи — все осознавали, что стоят на пороге новых открытий. Одна из загадок космоса — Большое Красное Пятно на Юпитере. Овальной формы, огромное, оно кружится, словно гигантский вихрь, и никогда не останавливается… Взглянув на снимки, переданные «Вояджером-2», каждый узнает хорошо знакомое проявление турбулентности, правда, невиданного доселе, вселенского масштаба. Пятно — одна из давно известных достопримечательностей Солнечной системы, «налитое кровью око средь завитков нахмуренных бровей», как описал его Джон Апдайк. Но что же это такое? Через двадцать лет после Лоренца Смэйл и другие ученые, по-новому взглянув на различного свойства природные токи, поняли, что атмосфера Юпитера подбрасывает им загадку, достойную того, чтобы на ней испытать возможности науки о хаосе. Три столетия подряд лучшие умы бились над разгадкой этой тайны, но чем больше узнавали, тем меньше понимали. Астрономы обнаружили Пятно вскоре после того, как Галилей направил свои телескопы на крупнейшую из планет Солнечной системы. Роберт Хук увидел это образование еще в начале XVII века, Крети изобразил таинственный феномен на полотне (работа хранится в картинной галерее Ватикана). Окраска Пятна проясняла не многое. Однако телескопы совершенствовались, и новое знание порождало новые гипотезы и теории, буквально наступавшие на пятки друг другу. Вот лишь некоторые из них. Теория извержения лавы. В конце XIX века ученые представляли себе Пятно как огромное озеро лавы, вытекающей из кратера вулкана или же из отверстия, которое образовалось в твердой коре после падения на поверхность планеты одного из спутников Юпитера. Теория зарождения Луны. Один немецкий ученый, напротив, предположил, что загадочное Пятно связано с формированием новой юпитерианской луны. Теория яйца. Когда обнаружилось, что Пятно слегка перемещается по направлению к теневой стороне планеты, в 1939 г. возникла гипотеза о более или менее твердом образовании, которое плавает в атмосфере, подобно тому как яйцо плавает в воде. Варианты этой теории, в том числе идея о дрейфующем скоплении газа (водорода или гелия), высказывались на протяжении десятилетий. Теория газового столба. В XX веке вскрылась и другая новая деталь: хотя Пятно перемещается, сдвиг никогда не бывает значительным. В 60-х годах родилось предположение, что Пятно — вершина бьющего из недр газового столба, который, вероятно, берет свое начало в одном из кратеров. Когда в полет отправился «Вояджер», большинство астрономов посчитали, что загадка Пятна разрешится сразу, ведь они наконец смогут взглянуть на космическую диковину вблизи. И что же? «Вояджер» передал много полезной информации, но она не решила проблемы. На фотографиях Юпитера, полученных в 1978 г., буйствовали могучие ветры, закручивались в спирали красочные вихревые токи, но самым впечатляющим зрелищем оказалось Пятно, подобное урагану[2], система кружащихся водоворотом течений. Пятно располагалось в стороне от облаков, в зоне восточно-западных ветров, опоясывающих планету. Гигантский ураган — вот первое, что приходило на ум, но в силу определенных причин это объяснение никуда не годилось. Земными ураганами движет тепло, высвобождающееся при конденсации влаги и выпадении дождя. Совсем иные силы приводят в движение Пятно. Ураганы, как и циклоны, перемещаются против часовой стрелки в северном полушарии Земли и по часовой стрелке — в полушарии южном, подобно всем бурям, происходящим на нашей планете. Если судить по указанному признаку, Пятно представляет собой антициклон. И наконец, даже самые разрушительные ураганы длятся лишь несколько дней, а не миллионы лет… Изучая полученные космическим аппаратом снимки, астрономы также пришли к выводу, что Юпитер являет собой не твердое тело с тончайшей, как у Земли, атмосферной оболочкой, а жидкую сферу. Если Юпитер и имеет твердое ядро, то оно весьма удалено от поверхности. Пятая от Солнца планета оказалась гигантским наглядным пособием для изучения динамики жидкостей. И на поверхности этого жидкого тела монотонно кружилось Пятно, которому совсем не мешал царивший вокруг хаос. Пятно стало тестом на образное мышление. Чего только не узнавали в нем исследователи… Специалисты по динамике жидкостей, считавшие турбулентность случайным явлением, шумом, не могли объяснить, как в самом сердце ее возник этот островок стабильности. «Вояджер» вдвойне усложнил задачу, показав то, чего не разглядишь с земли в самый мощный телескоп. Увеличение масштаба быстро выявило элементы неупорядоченности, в частности зарождение и затухание вихрей в течение дня или даже часов. Тем не менее тайна Пятна оставалась тайной. Что давало ему жизнь? Что удерживало почти на одном и том же месте? В архивах НАСА — а их существует около полудюжины в США — хранятся снимки, полученные с космических аппаратов. В начале 80-х годов неподалеку от городка Итака, где расположены Корнеллский университет и один из таких архивов, работал Филипп Маркус, молодой астроном, интересовавшийся также прикладной математикой. Получив данные наблюдений с космического корабля, он, среди немногих в США и Великобритании, занялся моделированием Пятна. Специалистам, не связанным гипотезой о чудовищном урагане, не пришлось долго искать аналогий. Взять, например, Гольфстрим, течение в западной части Атлантики. Оно также изгибается и разветвляется, в нем зарождаются небольшие волны, закручивающиеся в петли, а затем в кольца; поодаль от основного течения они образуют медленные продолжительные антициклонические водовороты. Напрашивалась и параллель с довольно специфическим явлением, известным в метеорологии как блокировка. Феномен блокировки имеет место, когда область высокого давления находится на значительном расстоянии от берега и медленно, неделями или месяцами, меняет направление, отклоняясь от оси восток — запад. Он искажает модели глобального прогнозирования погоды, но одновременно обнаруживает черты долговечной упорядоченности, подавая метеорологам слабую надежду. Маркус часами изучал фотографии из архивов НАСА, великолепные изображения, полученные на аппаратуре шведской фирмы «Хассельблад», которая запечатлела и людей на Луне, и турбулентность на Юпитере. Универсальность законов Ньютона позволила Маркусу составить программу для решения задачи, которую он формулировал как поиск закономерностей поведения массы плотного водорода и гелия, напоминающей незажженную звезду. Юпитер вращается быстро, период его вращения составляет приблизительно десять земных часов. Это вращение порождает направленную в сторону мощную силу Кориолиса, которая толкает назад человека, идущего сквозь вихрь. Именно такая сила и подпитывает Пятно. В отличие от Лоренца, который использовал маломощный компьютер для составления приблизительных графиков погоды, Маркус располагал гораздо более широкими возможностями, чтобы создавать потрясающе красочные картины. Сначала он сделал лишь эскизы, поскольку происходящее вырисовывалось весьма смутно. Затем ученый изготовил слайды и собрал все компьютерные изображения в некое подобие анимационного фильма. Увиденное обернулось открытием: модель кружащихся вихрей в ярких синих, красных и желтых цветах срасталась в овал, как две капли воды похожий на Большое Красное Пятно, чей образ был запечатлен космическим аппаратом и хранился теперь в НАСА. «Вы видите эту огромную отметину, купающуюся, словно моллюск, в мелких хаотичных течениях, которые, в свою очередь, вбирают в себя энергию, подобно губке! — восклицал ученый. — Вы видите эти крошечные волокнистые структуры в море хаоса на заднем плане!» Пятно представляло собой самоорганизующуюся систему, порожденную и регулируемую теми же нелинейными эффектами вращений, которые создают непредсказуемый беспорядок вокруг него. Это был образчик стабильного хаоса. Еще старшекурсником Маркус изучал традиционную физику, осваивал теорию линейных уравнений и ставил эксперименты, пытаясь с их помощью решить сложные проблемы, которые приводили к уравнениям нелинейным. Свой подкоп под крепостные стены научной традиции он вел втайне, поскольку не полагалось выпускнику тратить драгоценное время на возню с нелинейными уравнениями, которые все равно не имеют решения. Помня об этом, Маркус относился к своим исследованиям как к хобби и не вдруг узрел в них нечто такое, что можно было рассматривать как знамение хаоса. Когда же это случилось, он замер на миг в восхищении и воскликнул: «Вот здорово! Как вам понравится такой маленький беспорядок?» Этот вопрос был адресован реальному миру, сиречь коллегам и учителям, а мир ответил: «Да не волнуйся ты так! Это всего лишь погрешность эксперимента». Но в отличие от большинства физиков Маркус отлично усвоил уроки Лоренца, состоявшие в том, что детерминистская система может демонстрировать не одно только периодическое поведение. Он понимал, что необходимо искать неупорядоченность, заключающую в себе структурированные фрагменты. Маркус рассматривал загадку Большого Красного Пятна, сознавая, что сложная система может породить турбулентность и организованность одновременно. Он чувствовал в себе силы для созидания в новой области науки, которая нашла особое применение компьютерам, и был готов причислить себя к новому типу ученых. Они, эти ученые, были не столько астрономами, не столько физиками или прикладными математиками, сколько специалистами по хаосу. Примечания:2 В Северной Америке ураганами принято называть тропические циклоны. (Примеч. ред.) |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх |
||||
|