Глава 9

Группа динамических систем

Коммуникация сквозь революционный водораздел неизбежно частична.

(Томас С. Кун)

В городке Санта-Крус, лежащем в часе езды к югу от Сан-Франциско, расположен один из самых молодых кампусов Калифорнийского университета. Он выглядит картинкой из сборника волшебных сказок. Говорят, он скорее похож на заповедник, чем на учебное заведение. Послушные духу времени, архитекторы и планировщики постарались сохранить каждое живое дерево. Здания, соединенные узкими тропинками, уютно укрываются в тени секвой. Кампус выстроен на вершине холма, так что время от времени его обитателям выпадает случай полюбоваться заливом Монтеррей, искрящимся на солнце. Открывшись в 1966 г., отделение Калифорнийского университета в Санта-Крусе за несколько лет стало одним из самых престижных кампусов во всем штате. Студенты связывали его с именами многих идолов интеллектуального авангарда: здесь читали лекции Норман О. Браун, Грегори Батсон, Герберт Маркузе. Факультеты оставляли противоречивое впечатление, и физический не являлся исключением; там трудилось около пятнадцати ученых, энергичных и в основном молодых, ставших своими в разношерстной среде блестящих нонконформистов, которых привлекал Санта-Крус. Физики находились под влиянием идеологии свободомыслия, но, поглядывая на юг, в сторону Калифорнийского технологического института, понимали, что им необходимо заложить высокие исследовательские стандарты, доказав тем самым серьезность своих намерений.

Одним из аспирантов, в чьей серьезности никто не сомневался, был Роберт Стетсон Шоу, уроженец Бостона и выпускник Гарварда, старший из шести детей в семье доктора и медсестры. По возрасту он превосходил большинство однокурсников — в 1977 г. ему исполнился тридцать один год. Учеба Шоу в Гарварде несколько раз прерывалась из-за службы в армии, жизни в общине и других неожиданных поворотов судьбы, происходивших между указанными событиями. Роберт не знал, что привело его в Санта-Крус. Он никогда не видел кампус — только буклет с изображением местных красот и с рассказами о новых течениях в философии образования. Шоу обладал тихим, даже робким нравом. Будучи способным исследователем, он почти закончил свою докторскую диссертацию, посвященную сверхпроводимости. До полного завершения работы осталось лишь несколько месяцев, и никому не было особого дела до того, что он впустую тратил время, играя с аналоговым компьютером на нижнем этаже физического факультета.

Образование физика зависит от того, повезло ли ему с наставником. Молодые ученые, аспиранты и постдоки, помогают маститым профессорам справляться с экспериментальной работой и утомительными вычислениями, получая от своих руководителей часть выделяемых по грантам средств и шанс опубликовать научные работы. Хороший руководитель поможет своему протеже выбрать достойную внимания проблему, которая одновременно интересна и разрешима. Если сотрудничество процветает, влияние профессора расчищает путь для успешной карьеры молодого ученого, позволяет найти работу. Зачастую имя одного ассоциируется с именем другого. Однако когда дисциплина еще не существует как таковая, лишь немногие готовы преподавать ее. Подобное случилось и с наукой о хаосе: избравший ее полем деятельности в 1977 г. не мог отыскать научного руководителя. Не читали тогда такого курса, не было ни центров для изучения нелинейных феноменов и исследования сложных систем, ни учебников по хаосу, ни научной периодики.


Уильям Бёрк — ученый из Санта-Круса, занимавшийся космологией и теорией относительности, — случайно встретил своего друга Эдварда А. Шпигеля, астрофизика, в час дня в коридоре одного из отелей Бостона, куда оба прибыли на конференцию по общей теории относительности. «Представляешь, я только что послушал доклад об аттракторе Лоренца!» — поделился Шпигель. Используя схему собственного изобретения, присоединенную к приемнику, он превратил этот символ хаоса в циклическое повторение жутких свистящих звуков. Шпигель пригласил Бёрка посидеть в баре и изложил ему все в подробностях.

Шпигель был знаком с Лоренцем лично и, конечно, знал о хаосе еще с 60-х годов. Предметом его научного интереса являлось неупорядоченное поведение в моделях движения звезд, и он поддерживал контакты с французскими математиками. В конце концов, будучи профессором Колумбийского университета и занимаясь астрономическими исследованиями, Шпигель сфокусировал свое внимание на явлении турбулентности в космосе — так называемых космических аритмиях. Он обладал удивительной способностью увлекать коллег новыми идеями, и к концу вечера идеей аттрактора загорелся и Бёрк, всегда воспринимавший новые мысли с энтузиазмом.

Последний сделал себе имя в научном мире, работая над одним из наиболее парадоксальных вопросов, привнесенных в науку Эйнштейном, — понятием о волнах гравитации, струящихся сквозь материю пространства-времени. То была в высшей степени нелинейная система, проявляющая себя столь же сложным и непредсказуемым образом, как турбулентность в жидкости. Проблема казалась весьма абстрактной и теоретической, однако Бёрк не обходил вниманием и «приземленную» физику. Однажды он написал работу, посвященную оптике пивной кружки: ученый исследовал, насколько толстым должно быть ее стекло, чтобы кружка казалась наполненной до краев. Берк любил повторять, что он из тех ретроградов, которые считают физику реальностью. Прочитав в журнале «Нейчур» статью Роберта Мэя, где тот настоятельно рекомендовал расширить курс нелинейных систем, ученый несколько часов «поиграл» на калькуляторе с описанными в работе уравнениями. Аттрактор Лоренца показался Бёрку интересным. Не желая доверять чужим словам, он загорелся желанием увидеть поразительный феномен собственными глазами. Возвратясь в Санта-Крус, Бёрк вручил Роберту Шоу лист бумаги с нацарапанными на нем тремя дифференциальными уравнениями и поинтересовался, нельзя ли ввести их в аналоговый компьютер.

В эволюции вычислительных машин аналоговые компьютеры считались тупиковой ветвью. Такие устройства обычно не держали на физических факультетах, и в Санта-Крусе одно из них оказалось по чистой случайности. Первоначально здесь задумывали организовать инженерную школу, а когда планы изменились, выяснилось, что энергичный агент уже приобрел для нее кое-какое оборудование, в частности аналоговые компьютеры.

Напомним, что память цифровых компьютеров состоит из множества унитарных элементов-ячеек — в прошлом электронных ламп-диодов, которые могут находиться в двух состояниях: 1) диод проводит ток, что соответствует числу «единица»; 2) диод не проводит ток, что соответствует числу «ноль». Компьютер оперирует с этими нулями и единицами, позволяя получать ответы на заданные программистами вопросы. Элементная база его поддается той миниатюризации и акселерации технологий, которая управляла компьютерной революцией. Выполненное однажды на цифровом компьютере могло быть выполнено вновь, точь-в-точь с тем же результатом, и в принципе воспроизведено на любом другом компьютере. Что касается аналоговых машин, то они — вещь неопределенная и неунифицированная. Составляющие их блоки не ячейки типа диодов, как в цифровых компьютерах, а электронные схемы, подобные резисторам и конденсаторам, которые хорошо знакомы любому, кто когда-либо увлекался радиотехникой, как, например, Роберт Шоу. В Санта-Крусе стояла машина модели «Systron-Donner», громоздкое, припорошенное пылью устройство с фронтальной панелью, похожей на те, что применялись в вышедших из употребления телефонных коммутаторах. Программирование на аналоговом компьютере заключалось в выборе электронных компонентов и подключении шнуров к наборной панели.

Конструируя различные комбинации соединений схем, программист имитирует системы дифференциальных уравнений таким образом, что данные модели хорошо разрешают проблемы инженерии. Допустим, нам необходимо построить модель автомобильной подвески с рессорами и амортизаторами такой конструкции и массы, чтобы добиться наиболее плавного движения. Можно сделать так, чтобы осцилляции в аналоговом компьютере соответствовали осцилляциям в реальной физической системе. Конденсатор заменяет рессору, индукторы олицетворяют массу и т. п. Расчеты неточны — числовым выкладкам отводится второстепенная роль. Вместо этого мы имеем модель из металла и электронов, достаточно быструю и — что лучше всего — легко регулируемую. Простым нажатием на кнопку мы можем подстраивать переменные, придавая рессоре дополнительную упругость или ослабляя трение. И за изменениями результатов можно наблюдать в реальном времени, поскольку кривые выводятся на экран осциллографа.

Работая урывками в лаборатории сверхпроводимости, Шоу пытался закончить свою диссертацию, но все больше времени проводил возле компьютера «Systron-Donner». Он уже смог изобразить «портреты» некоторых простых систем в фазовом пространстве — периодичных орбит или ограниченных кругов. Узрев хаос, воплощенный в странных аттракторах, он, конечно же, не узнал его запечатленным в виде уравнений Лоренца. Впрочем, эти уравнения казались не сложнее тех, с которыми возился сам Шоу. Для того чтобы подсоединить шнуры и нажать нужные кнопки, понадобилось всего несколько часов, а спустя пару минут молодой ученый уже понял, что ему не суждено закончить диссертацию по сверхпроводимости.

Он остался в подвальном помещении на ночь и провел там много других ночей, наблюдая за зеленой точкой, что мелькала на экране осциллографа, снова и снова вычерчивая характерную для аттрактора Лоренца кривую, похожую на маску совы. Плавные ее контуры, мерцающие и трепещущие одновременно, будто отпечатались на сетчатке, не походя ни на один из когда-либо исследованных объектов. Казалось, феномен жил своей жизнью, никогда не повторяя прежние формы и приковывая к себе взгляд, словно подвижный язычок пламени. Недостаточная точность аналогового компьютера сыграла на руку Шоу, который быстро почувствовал «сильную зависимость от начальных условий», убедившую Лоренца в тщетности долгосрочного прогнозирования погоды. Молодой физик задавал начальные условия, нажимал кнопку ввода, и появлялся аттрактор. Потом Шоу вновь задавал те же начальные условия, но новая орбита весьма заметно отдалялась от предыдущей, хотя и заключалась в том же аттракторе.

Как ребенок, Шоу строил иллюзии насчет того, какой будет наука о вновь открытых формах. Романтическое воображение рисовало ему прорыв в неизведанное, и то, что он увидел, оказалось достойным его мечтаний. Экспериментатору иного склада физика низких температур — все это множество отвесов и огромных магнитов, баллонов с жидким гелием и нониусов — представлялась весьма занятной, но для Шоу это был путь в никуда. Вскоре он перетащил аналоговый компьютер наверх, но никогда уже не возвращался к феномену сверхпроводимости.


«Просто нажимая на кнопки, вы ощутите себя первооткрывателем иного мира. Вам даже не захочется вынырнуть, чтобы сделать глоток воздуха», — говорил Ральф Абрахам, профессор математики, одним из первых увидевший аттрактор Лоренца в движении. Абрахам работал в Беркли со Стивом Смэйлом, а тот был одним из немногих ученых в Санта-Крусе, которые могли оценить по достоинству важность игрушки Шоу. Первой реакцией ученого было удивление — уж очень быстро мелькали фигуры, — и Шоу пояснил, что смена образов могла быть еще стремительней, не включи он в схему дополнительные конденсаторы. Аттрактор оказался весьма устойчивым. Хотя вычисления с помощью аналоговых схем носили приблизительный характер, настройка и перестановка не влекли за собой исчезновение изображения, не превращали его в некую случайность, но поворачивали или изгибали объект таким образом, что он постепенно начинал приобретать смысл. «Роберту довелось испытать, как небольшое открытие разом проясняет все загадки, — отмечал Абрахам. — Многие важнейшие понятия — показатель Ляпунова, фрактальное измерение — сами собой придут на ум. Вы увидите их и начнете исследования».

Была ли это наука? Определенно, компьютерное исследование, чуждое формальных доказательств, не назовешь математикой, и тут даже сочувствие и поддержка ученых вроде Абрахама не могли изменить ситуацию. Физический факультет также не усматривал особых причин считать увиденное физикой. Однако что бы то ни было, оно привлекало внимание. Шоу обычно оставлял дверь своей комнаты открытой, а напротив, через холл, располагался вход на физический факультет, так что поблизости все время толклись люди. И вскоре у Шоу появилась компания.

В коллективе, который назвался Группой динамических систем — иногда его именовали Кликой Хаоса, — немногословный Шоу стал центром притяжения. Не без доли робости он выдвигал на суд ученой публики собственные идеи. По счастью, его товарищи не испытывали подобных затруднений; зачастую они просто полагались на его видение того, как довести до конца незапланированную программу исследования в непризнанной отрасли науки.

Дойн Фармер, высокий, худощавый, слегка рыжеватый уроженец Техаса, — быстро приобрел репутацию красноречивого оратора группы. В 1977 г. ему исполнилось двадцать четыре года, и он был полон энергии и энтузиазма — генератор идей во плоти. При первой встрече его даже частенько принимали за хвастуна. Норман Пакерд, тремя годами младше, был товарищем Фармера с детских лет. Как и Фармер, он вырос в городке Сильвер-Сити, штат Нью-Мексико, а в Санта-Крус прибыл, когда Фармер взял год отпуска, чтобы попытаться приложить законы движения к игре в рулетку. Дойн приступил к решению этой задачи со всей серьезностью, но идея была притянута за уши. Тем не менее больше десяти лет Фармер, а за ним и другие юные физики, профессиональные игроки и просто сочувствующие пытались вывести закон рулетки. Фармер не оставил этого занятия, даже когда перешел на работу в теоретический отдел Национальной лаборатории в Лос-Аламосе. Просчитывались уклонения и траектории, писалось и переписывалось программное обеспечение, в ботинки встраивались миниатюрные компьютеры, ради набегов на близлежащие казино, но ни один из методов не оправдал ожиданий. Все члены группы, кроме Шоу, так или иначе занимались этим проектом. Надо сказать, он научил их быстро анализировать динамические системы. Однако не обошлось без издержек: Фармер так и не сумел убедить факультет физики Санта-Круса, что всерьез воспринимает науку.

Четвертым членом Группы динамических систем стал Джеймс Кручфилд, самый младший из всех и единственный уроженец Калифорнии. Невысокого роста, крепко сбитый, виртуоз виндсерфинга, Кручфилд чувствовал компьютер как самого себя. В Санта-Крус он приехал будучи студентом последнего курса, ассистировал Шоу в его опытах по сверхпроводимости, затем перебрался, как говорили в Санта-Крусе, «на ту сторону холма» — работал в исследовательском центре IBM в Сан-Хосе — и в 1980 г. вновь стал аспирантом физического факультета. К тому времени, прокрутившись уже два года возле лаборатории Шоу, он ринулся изучать математику, необходимую для постижения динамических систем. Как и все остальные члены группы, Кручфилд оставил позади проторенную тропу исследований.

Весной 1978 г. на факультете окончательно поверили, что Шоу забросил свою диссертацию по сверхпроводимости, несмотря на то что он был очень близок к ее завершению. Не важно, что иссяк интерес к работе, убеждали коллеги, надо преодолеть все последние формальности, получить докторскую степень и двигаться дальше, к новым академическим успехам. Хаос таковых не сулил. Никто в Санта-Крусе не обладал должной квалификацией, чтобы читать курс, не имевший даже названия. Докторской степенью здесь и не пахло, не говоря уж о вакансиях. Все упиралось еще и в денежный вопрос: физические исследования в Санта-Крусе, как и в любом американском университете, финансировались Национальным научным фондом и другими федеральными ведомствами путем предоставления грантов членам факультета. Флот, военно-воздушные силы, Министерство энергетики, ЦРУ выделяют крупные суммы, не ставя условием немедленное применение разработок в гидро- и аэродинамике, энергетике или разведке. Работающий на факультете физик получает достаточно средств, чтобы приобрести лабораторное оборудование и выплачивать стипендии своим аспирантам. Руководитель покрывает их расходы на фотокопирование, оплачивает дорогу на конференции и даже выделяет некоторую сумму, чтобы они могли отдохнуть на каникулах. В противном случае аспиранты были бы брошены на произвол судьбы. Такова была система, от которой Шоу, Фармер, Паккард и Кручфилд отказались по доброй воле.

Когда по ночам стало пропадать кое-какое электронное оборудование, его искали в лаборатории Шоу, где тот прежде проводил низкотемпературные эксперименты. Время от времени один из четырех обращался к ассоциации аспирантов с просьбой о выделении тысячи долларов. Иногда физический факультет сам изыскивал эту сумму. В результате группа обзавелась плоттерами, конвертерами, электронными фильтрами. Специалисты по физике частиц, обитавшие на первом этаже, имели в своем распоряжении небольшой цифровой компьютер — хранилище всякого хлама. Вскоре он перекочевал в лабораторию Шоу. Фармер поднаторел в использовании чужих вычислительных машин. Однажды летом его пригласили в Национальный центр исследований атмосферного пространства в Боулдере, штат Колорадо, где огромные компьютеры моделируют погоду в мировом масштабе. Мастерство, с которым Фармер урывал ценившееся на вес золота время этих машин, ошеломило метеорологов.

Хорошую службу молодым ученым сослужило умение обращаться со всякого рода «железками». Шоу с детства только и делал, что копался во всяких устройствах. Паккард еще мальчишкой ремонтировал в Сильвер-Сити телевизоры. Кручфилд принадлежал к первому поколению математиков, которым логика компьютерных процессоров казалась естественным языком. Здание физического факультета, располагавшееся в тени деревьев, ничем не отличалось от прочих строений такого рода, — те же бетонные полы и вечно нуждающиеся в покраске стены, однако в комнате, где работали адепты хаоса, царила особая атмосфера — там громоздились кучи бумаг, на стенах фотографии таитянок перемежались с изображениями странных аттракторов. Почти каждый час, но чаще ночью, случайный посетитель мог наблюдать, как члены группы заново устанавливают схемы, отсоединяют шнуры от наборной панели, спорят о самосознании и эволюции, регулируют экран осциллографа или просто с упоением смотрят, как сверкающая зеленая точка, чья орбита мерцает и подрагивает словно живое существо, вычерчивает бесконечную кривую.


«На самом деле всех нас привлекло одно и то же: мысль, что можно наблюдать детерминизм, но в какой-то степени нереальный, — признавался Фармер. — Идея о том, что классические детерминистские системы, которые мы изучали, способны генерировать случайность, казалась интригующей, и мы двигались дальше, чтобы понять, что дает ход этому явлению.

Нельзя по достоинству оценить такое открытие, если в течение шести или семи лет человеку не вбивали в голову все стандартные курсы физики. Нас учили, что существуют классические системы, где абсолютно все определяется начальными условиями, потом есть еще квантовая механика, где явления тоже предопределены, но необходимо учитывать пределы, ограничивающие начальные данные. Что же касается понятия нелинейный, то его мы встречали лишь в конце учебника. Так, студент-физик изучал курс математики, где самая последняя глава была посвящена нелинейным уравнениям. Обычно мы пропускали ее, а если и нет, то усваивали только одну рекомендацию: нужно свести эти нелинейные уравнения к линейным, чтобы получить приблизительные решения. Мы расписывались в собственной беспомощности.

Не имея понятия, что порождает нелинейность в модели, мы задавались вопросом: что является причиной такого неупорядоченного поведения? Ведь его не видно в уравнениях… Казалось, что-то появляется прямо из небытия!»

Кручфилд говорил: «Мы поняли, что перед нами лежит целая область физических знаний, которую нельзя втиснуть в рамки современного научного исследования. Нас этому не учили. Ну что ж, нам представился шанс взглянуть на реальность прекрасного земного мира и попытаться хоть что-то понять».

Очарованные постигнутым, они обескуражили профессоров, взявшись за проблемы детерминизма, природы интеллекта, направления биологического развития.

«Нас объединило то, что мы все смотрели вдаль, — объяснял Паккард. — Мы были поражены, выяснив, что упорядоченные физические системы, затертые до дыр в курсе классической физики, порождают нечто таинственное, если слегка изменить параметры, нечто такое, к чему неприменим огромный аналитический аппарат.

Феномен хаоса мог быть открыт гораздо, гораздо раньше. Этого не случилось потому, что исследования динамики регулярного движения вели ученых по другому пути. Но если взглянуть повнимательнее, можно обнаружить и дорожку к хаосу. Проделанная работа укрепляла в следующей мысли: пусть физика и наблюдения ведут нас, и мы посмотрим, какие новые теории можно развить. Мы признали изучение сложных систем отправной точкой, от которой можно перейти к пониманию их истинной, реальной динамики».

Фармер добавлял: «В философском плане обнаруженное ошеломило меня. Ведь это был действенный путь примирения свободы воли с детерминизмом. В самом деле: система является детерминистской, но мы не знаем, как она себя поведет в дальнейшем! Я всегда ощущал, что наиважнейшие проблемы в мире связаны с законами организации жизни и разума. Но как и где можно их изучить? То, чем занимались биологи, казалось чересчур прикладным и специфичным. Химики, бесспорно, не работали над этой проблемой. Математики и физики, к сожалению, тоже. Однако я чувствовал, что вопрос о стихийной самоорганизации должен относиться именно к сфере физики. То, что мы увидели в своих экспериментах, являлось двумя сторонами одной медали. Порядок существовал — такой порядок, в который постепенно вклинивалась доля случайности, еще шаг — и появлялся хаос, скрывающий в себе свой особый порядок».


Шоу и его коллегам пришлось претворить переполнявший их энтузиазм в трезвую научную программу. Они задавали вопросы, на которые можно было ответить и стоило отвечать. Они искали связующие звенья между теорией и опытом. Именно там, как подсказывала интуиция, лежал пробел, который требовалось заполнить. Приступая к работе, молодые ученые должны были выяснить, что уже известно, а что еще ждет своего часа. Одно это представлялось тяжким испытанием.

Группе динамических систем мешало то, что общение ученых ограничено рамками отдельных дисциплин. Эта обособленность была особенно досадной помехой, когда предмет исследования лежал на границе целого ряда областей знания. Зачастую исследователи даже не представляли, где именно находятся — в уже освоенных владениях науки или на неизведанной территории. Единственным, кто мог пролить свет на это обстоятельство, был Джозеф Форд, страстный ревнитель хаоса из Технологического института Джорджии. Он уже бесповоротно решил, что будущее физики — за нелинейной динамикой, и только за ней, и занялся сбором и распространением сведений о журнальных публикациях по хаосу. Сам он занимался недиссипативным хаосом, хаосом астрономических объектов и физики частиц. Форд, как никто другой, был в курсе исследований советских ученых и считал своим долгом поддерживать контакты со всеми, кто хотя бы отдаленно разделял философию новоиспеченной дисциплины. Везде и всюду он обзаводился друзьями, и краткий пересказ статьи любого исследователя проблемы нелинейности немедленно пополнял растущее собрание рефератов Форда. Молодые ученые из Санта-Круса, узнав о начинании Форда, обратились к нему с просьбой выслать копии статей, и вскоре публикации потекли рекой.

Члены группы выяснили, что странные аттракторы возбуждают множество вопросов. Каковы их характерные формы? Что представляет собой их топологическая структура? Что говорит геометрия о физике родственных динамических систем? Первым подходом к проблеме явилось практическое исследование, с которого и начал Шоу. Многие математические статьи были посвящены аспекту структуры, но подход математиков казался Шоу слишком детализированным: за деревьями еще не видно было леса. Изучение литературы привело его к мысли, что математики, отвергнув в силу предубеждения компьютерный эксперимент, запутались в сложностях структуры аттракторов и отдельных орбит, бесконечности, возникавшей здесь, и отсутствии регулярной последовательности, проявлявшейся там. Их не интересовала неопределенность аналоговых процессов, которая, с точки зрения физика, правила реальным миром и всеми его системами. Сам Шоу, будучи физиком, увидел на экране своего осциллографа не отдельные орбиты, а некую огибающую кривую, элементами которой они являлись. Эта кривая менялась по мере того, как он нажимал на кнопки. Он не мог дать точное объяснение наблюдаемым изгибам и поворотам на языке математической топологии, и все же ему начинало казаться, что он понимает их.

Физик стремится делать измерения. Но что можно измерить в неуловимых движущихся образах? Члены группы попытались отделить те особые свойства, которые делали странные аттракторы столь чарующими. Сильная зависимость от начальных условий — стремление близлежащих траекторий отдалиться друг от друга… Именно эта характеристика заставила Лоренца понять, что долгосрочное предсказание погоды невозможно. Но где взять инструменты, чтобы определить степень зависимости? Да и поддается ли измерению непредсказуемость?

Ответ на этот вопрос дала концепция, родившаяся в России, а именно — показатели Ляпунова. Эти величины выражали меру как раз тех топологических характеристик, которые соответствовали понятию непредсказуемости. Показатели Ляпунова давали возможность в рамках некоторой системы оценить противоречивые результаты сжатия, растяжения и свертывания в фазовом пространстве аттрактора, позволяя тем самым судить обо всех свойствах системы, которые ведут к стабильности или неупорядоченности. Если значение показателя оказывалось больше нуля, это свидетельствовало об удлинении, при котором близлежащие точки разделялись. Значение меньше нуля указывало на сокращение. Для аттрактора, представлявшего собой неподвижную точку, все экспоненты Ляпунова являлись отрицательными, поскольку растяжение было направлено внутрь, к конечному устойчивому состоянию. Аттрактор в форме периодической орбиты характеризовался лишь одним нулевым значением, все другие значения были отрицательными. Странный аттрактор, как выяснилось, должен был обладать по крайней мере одним положительным значением показателя Ляпунова.

К досаде молодых ученых, оказалось, что они не создали ничего нового, а всего лишь развили готовую идею настолько, насколько было возможно с точки зрения практики, научившись измерять показатели Ляпунова и соотносить их с другими важными характеристиками. Используя компьютерную анимацию, они строили серии движущихся картин, иллюстрировавших биения порядка и хаоса в динамических системах. Проделанный ими анализ ясно показывал, каким образом системы, будучи неупорядоченными в одном направлении, могут оставаться вполне определенными и устойчивыми в другом. Один из таких своеобразных фильмов демонстрировал, что происходит с крошечным кластером соседствующих точек на странном аттракторе — олицетворением начальных условий — по мере развития системы во времени. Кластер начинал «распыляться», теряя фокус, превращался в точку, затем — в маленький шарик, который у некоторых типов аттракторов быстро распылялся. Такие аттракторы представляли интерес при изучении смешивания. У других аттракторов распыление шло лишь в определенных направлениях: шарик превращался в ленту, хаотичную по одной оси и упорядоченную по другой. Создавалось впечатление, будто в системе уживаются упорядоченный и хаотический импульсы и они как бы обособлены. В то время как один импульс приводил к случайности и непредсказуемости, другой работал будто точнейшие часы. И оба они могли быть определены и измерены.


Исследования хаоса, проведенные в Санта-Крусе, наиболее существенно затронули тот раздел математики, в котором присутствует изрядная доля философии и который называется теорией информации. Эта теория была создана в конце 40-х годов Клодом Шенноном, американским инженером, трудившимся в лабораториях компании «Белл телефон». Он назвал свою работу «Математическая теория коммуникации», но поскольку речь в этом труде шла об особом предмете, называемом информацией, за новой дисциплиной закрепилось наименование «теория информации». То был продукт века электроники. Линии связи и радиопередачи несли в себе нечто определенное, в недалеком будущем компьютерам предстояло хранить это «нечто» на перфокартах, магнитных цилиндрах и в оперативной памяти, и все же оно не являлось знаниями и само по себе не обладало смыслом. Основными единицами этого загадочного предмета являлись не идеи, не понятия и даже не всегда слова или числа. Независимо от того, нес ли он в себе смысл или бессмыслицу, инженеры и математики могли его измерять, пересылать по линиям передач и проверять такие передачи на точность. Слово «информация» было таким же словом, как и все остальные, но люди должны были запомнить, что они используют специальный термин, не освященный фактическим доказательством, учением, мудростью, пониманием и просвещением.

Технические средства ввели в рамки предмет изучения теории. Поскольку информация хранилась в ячейках компьютерной памяти в двоичном представлении, один разряд такой ячейки, содержащий единицу или ноль (что соответствует понятиям «да» и «нет») и названный битом, стал основной мерой информации. С технической точки зрения теория информации превратилась в инструмент, который помогал выяснить, каким образом шумы в форме случайных помех препятствуют плавному потоку битов при передаче. Теория подсказывала способ определения необходимой пропускной способности коммуникационных каналов, компакт-дисков или прочих продуктов технологии, кодировавшей язык, звуки и зрительные образы. Она указывала пути исчисления эффективности различных схем коррекции ошибок, в частности применения некоторых битов для проверки остальных. Наконец, она исследовала такое важнейшее понятие, как «избыточность». Согласно теории информации Шеннона обычный язык более чем на 50 % избыточен, т. е. содержит звуки или буквы, которые не являются строго необходимыми для передачи сообщения. Знакомая идея, не правда ли? Надежность связи в мире, где невнятно проговаривают слова и допускают опечатки, существенным образом зависит от избыточности. Известная всем реклама курсов стенографии «если в мжт прчть здс сбщн» наглядно демонстрирует выдвинутое утверждение, а теория информации позволяет дать количественную оценку данного феномена. Избыточность являет собой предсказуемое отклонение от случайного. В повседневном языке она проявляется в повторяемости значений, которое весьма сложно изменить — мера ее зависит от того, как избыточность сказывается на знаниях людей о собственном языке и мире. Именно элемент избыточности помогает людям решать кроссворды или вставлять пропущенное слово, если оно заканчивается, к примеру, буквой «а». Есть и другие типы избыточности, больше пригодные для численных измерений. Согласно статистическим данным, вероятность того, что взятой наугад буквой английского языка окажется буква «e», гораздо выше 1/26 (в английском алфавите 26 букв). К тому же не стоит рассматривать буквы как изолированные единицы. К примеру, зная, что в английском тексте есть буква «t», можно предположить, что за ней следует буква «h» или «о», а идентификация уже двух букв позволяет строить дальнейшие догадки. Частотность употребления комбинаций из двух или трех букв определяется особенностью того или иного языка. Компьютер, руководствуясь одной лишь частотностью трехбуквенных сочетаний, может выдать бессмысленный текст, но это будет узнаваемо английская бессмыслица. Криптологи долгое время использовали статистический принцип при расшифровке простых кодов. Сейчас инженеры, работающие в сфере коммуникаций, применяют его к технологиям сжатия данных и устранения избыточности, чтобы экономить пространство передающей линии или дискового накопителя. По Шеннону, нужно рассматривать эти модели, руководствуясь следующими соображениями: поток информации в обычном языке является менее чем случайным; каждый новый бит частично ограничен предшествующими; таким образом, каждый новый бит несет в себе в некоторой степени меньше содержания, чем тот, что заключает в себе реальную информацию. В такой формулировке просматривается некий парадокс: чем выше доля случайности в потоке данных, тем больше информации будет передано каждым новым битом.

Весьма ценная в техническом плане для начала компьютерной эры, теория информации Шеннона мало что привнесла в философию. Главный ее вклад, привлекший внимание специалистов других областей, выражается одним-единственным термином — энтропия. Как объяснял Уоррен Уивер в классическом изложении теории информации, «человек, впервые сталкивающийся с понятием энтропии в теории коммуникаций, вправе ощутить волнение, он вправе заключить, что встретил нечто основополагающее, важное». Концепция энтропии восходит к термодинамике; она фигурирует во втором законе, гласящем, что Вселенная и каждая отдельная система в ней неизбежно стремятся к нарастанию беспорядка. Разделите бассейн на две части, поставив между ними перегородку. Наполните одну часть водой, а другую — чернилами. Дождитесь, пока поверхность успокоится, а затем снимите перегородку. Вы увидите, что лишь посредством случайного перемещения молекул вода и чернила со временем перемешаются. Этот процесс никогда не повернет вспять, сколько ни жди — хоть до конца света. Именно поэтому считается, что второй закон термодинамики уподобил время одностороннему уличному движению. Энтропия — наименование того свойства систем, которое увеличивается согласно второму закону, — смешения, беспорядочности, случайности. Это понятие легче постичь интуитивно, не пытаясь измерить его в реальной жизни. Как с достаточной степенью достоверности можно оценить уровень смешения двух веществ? Во-первых, можно пересчитать молекулы каждого из них в отдельно взятой пробе; но как быть, если они организованы по принципу «да — нет — да — нет— да — нет — да — нет», подобно данным в линиях передач и компьютерной памяти? В этом случае вряд ли можно измерить энтропию с желаемой точностью. Другой способ заключается в подсчете только молекул «да — нет», но что делать, если они расположены по схеме «да — нет— нет — да — да — нет — нет — да»? К сожалению, строгий пересчет не поддается несложной алгоритмизации.

Роберт Шоу узрел в аттракторах движущую силу информации. Согласно его первоначальной и главнейшей концепции, хаос указывает естественный путь возврата к живым физическим наукам, к тем идеям, которые теория информации почерпнула из термодинамики. Странные аттракторы, соединяющие порядок и беспорядочность, придали новую значимость измерению энтропии систем. Они являются эффективными смесителями, которые создают непредсказуемость и таким образом повышают энтропию. По представлениям Шоу, они порождают информацию там, где ее ранее не существовало.

Однажды Норман Паккард, читая журнал «Американская наука», наткнулся на сообщение о конкурсе очерков, объявленном Луи Жако. Стоило подумать об участии: Жако, французский финансист, который выдвинул собственную теорию, касавшуюся структуры Вселенной, обещал победителю солидный приз. В конкурсе могли участвовать любые очерки, так или иначе соответствовавшие теме Жако. («Они получат груды писем от всяких чудаков», — предрекал Фармер.) Состав жюри впечатлял: туда входили светила французской науки. Паккард показал объявление Шоу. Работу нужно было представить на конкурс не позднее первого января 1978 г.

К этому времени члены группы регулярно встречались в большом старом доме недалеко от побережья. Сюда натаскали много мебели с блошиного рынка и компьютерного оборудования, применявшегося в основном для работы над теорией рулетки. Шоу держал там пианино, на котором наигрывал мелодии эпохи барокко или просто импровизации на классические и современные темы. Встречаясь у побережья, физики выработали собственный стиль исследований: процедуру оценки идей, просеивания их сквозь «сито» целесообразности, штудирования литературы и написания своих работ. В конечном счете молодые люди научились сотрудничать с журналами довольно эффективным образом, встав на путь коллективного творчества. Впрочем, первая статья была подписана именем Шоу (то была одна из немногих его работ), и он написал ее сам. И что характерно, подал с опозданием.

В декабре 1977 г. Шоу впервые направился на семинар, посвященный хаосу и проходивший в Академии наук Нью-Йорка. Профессор, руководивший Шоу, когда тот еще писал диссертацию по сверхпроводимости, оплатил ему проезд, и Роберт, не смущаясь отсутствием приглашения, прибыл послушать доклады ученых, которых знал только по публикациям. Давид Руэлль, Роберт Мэй, Джеймс Йорк — молодому физику эти люди внушали благоговейный трепет, как, впрочем, и плата за номер в отеле «Барбизон» — целых тридцать пять долларов! Астрономическая для него сумма… Внимая лекциям, он мучился противоречивыми чувствами. С одной стороны, было ясно, что он, сам того не ведая, двигался по уже изученной территории. С другой — что-то подсказывало Шоу, что он способен вынести на обсуждение новую важную идею. Он привез незаконченный вариант своей статьи о теории информации, написанный от руки и подколотый в скоросшиватель черновик. Попытки найти машинистку — сначала в гостинице, а затем где-нибудь еще — успеха не имели. Шоу был вынужден увезти работу назад. Уже потом, когда друзья начали расспрашивать о деталях поездки, он поведал, что кульминацией встречи стал банкет в честь Эдварда Лоренца, который наконец удостоился всеобщего признания, столь долго обходившего его стороной. Когда знаменитый ученый вошел в комнату, робко держа под руку жену, все присутствующие, встав со своих мест, приветствовали его аплодисментами. Эта овация просто ужаснула виновника торжества.

Несколькими неделями позже, во время поездки в штат Мэн, где у его родителей был дачный домик, Шоу все-таки отправил статью на конкурс Жако. Новогодние праздники уже миновали, но начальник местной почты великодушно проставил на конверте более раннюю дату. Очерк — смесь эзотерической математики и умозрительной философии, которую иллюстрировали похожие на кадры мультиков рисунки Криса Шоу, брата Роберта, — был удостоен похвального отзыва. Шоу получил достаточную сумму наличными, чтобы оплатить путешествие в Париж, где он мог востребовать награду. Достижение было скромным, но пришлось как раз ко времени, поскольку отношения Группы динамических систем с факультетом становились все более натянутыми. Молодые ученые отчаянно нуждались в любых проявлениях доверия извне, какие только могли снискать. Фармер забросил свою астрофизику, Паккард покинул нивы статистической механики, а Кручфилд не был готов к тому, чтоб сделаться аспирантом. На факультете чувствовали, что ситуация с парнями выходит из-под контроля.


Статья «Странные аттракторы: хаотическое поведение и поток информации» распространилась тогда в препринтном издании, тираж которого достиг в итоге около тысячи экземпляров. Это была первая старательная попытка соединить теорию информации и хаос.

Шоу представил в новом свете некоторые предположения классической механики. Энергия в природе существует как бы на двух уровнях: в макромире, объекты которого могут быть измерены и всесторонне описаны, и в микромире, где неисчислимое количество атомов находится в хаотическом движении, которое можно характеризовать только их средней скоростью, проявляющейся в макромире как температура. По замечанию Шоу, суммарная энергия микромасштабов может перевесить энергию макромасштабов, но в классических системах подобное тепловое движение не рассматривают, считая его изолированным. Таким образом, разные масштабы не сообщаются друг с другом, и, по словам Шоу, «совсем необязательно знать температуру, чтобы решить задачу из классической механики». Все же, с его точки зрения, хаотические и близкие к ним системы преодолевают разрыв между макромасштабами и микромасштабами и хаос порождается информацией.

Можно представить себе течение воды, огибающей препятствие. Как известно любому ученому, занимающемуся гидродинамикой, и каждому любителю гребли на каноэ, если поток струится достаточно быстро, то вниз по течению образуются водовороты. При определенной скорости завихрения остаются на месте, но с ее повышением начинают двигаться. Экспериментатор может различными методами получать данные о такой системы, например использовать детекторы вязкости и другие устройства. Но почему бы не попробовать самое простое? Выбрав точку, расположенную ниже препятствия по течению, надо через одинаковые временные интервалы наблюдать, в каком направлении закручивается завиток жидкости — направо или налево.

Если завихрения статичны, поток данных будет иметь следующий вид: налево — налево — налево — налево— налево — налево — налево — налево — налево — налево — налево — налево — налево — налево — налево — налево — налево — налево — налево — налево!.. По истечении некоторого времени наблюдатель начинает понимать, что фрагменты информации ничего нового о системе не сообщают. Возможно, завитки будут периодически менять направление: налево — направо — налево — направо — налево — направо — налево — направо — налево — направо — налево — направо — налево — направо — налево — направо — налево — направо — налево — направо… Хотя сначала ситуация кажется на порядок более интересной, она быстро исчерпывает все свои сюрпризы.

Когда же система, определенно в силу своей непредсказуемости, становится хаотичной, она начинает генерировать устойчивый поток данных, и каждое наблюдение приносит что-то новое. Такое поведение представляет собой проблему для экспериментатора, пытающегося полностью охарактеризовать систему. Как замечал Шоу, «он никогда не сможет покинуть лабораторию, поскольку поток превратится в непрерывный источник информации».

Но откуда исходит информация? Рассмотрим сосуд с водой. На микроскопическом уровне это мириады мириад молекул, кружащихся в полном случайностей термодинамическом танце. Подобно тому как турбулентность по цепочкам водоворотов передает энергию от больших масштабов вниз, к рассеивающим малым масштабам на уровне вязкости, так и информация передается назад от малых масштабов к большим. Во всяком случае, так Шоу и работавшие вместе с ним физики описали наблюдаемое явление. И каналом передачи данных наверх служит странный аттрактор, увеличивающий первоначальную неупорядоченность тем же образом, как открытый Лоренцом эффект бабочки «раздувает» крошечные неопределенности до размеров крупномасштабных моделей погоды.

Вопрос заключался в степени увеличения. Продублировав по неведению некоторые уже проведенные исследования, Шоу выяснил, что советские ученые вновь опередили группу. А. Н. Колмогоров и Яков Синай разработали базовые математические методы, позволяющие связать свойственную системе удельную энтропию, энтропию на единицу времени, с геометрическими изображениями растягивающихся и сгибающихся в фазовом пространстве поверхностей. Концептуальное ядро данной методики заключалось в создании вокруг произвольно малого объема некоторой совокупности начальных условий. Так, можно нарисовать на боку воздушного шарика маленький квадрат, а затем подсчитать эффекты от расширения или изгибов рассматриваемого объема. Он может, в частности, растянуться в одном направлении, оставаясь узким в другом. Изменения площади соответствовали внесению неопределенности относительно прошлого системы, получению или утрате информации.

В той степени, в какой термин «информация» обозначает непредсказуемость, данная теория соответствовала идеям, которые развивали Руэлль и другие ученые. Обращение к теории информации позволило группе из Санта-Круса использовать ту часть математической аргументации, которая была хорошо отработана теоретиками в сфере коммуникации. В частности, проблема добавления внешних помех в детерминистскую систему представлялась для динамики новой, но в области коммуникации с ней были уже хорошо знакомы. Молодых ученых, впрочем, математика привлекла лишь отчасти. Когда они обсуждали системы, генерирующие информацию, то размышляли и о спонтанном зарождении некоего образа в мире. Паккард замечал: «Кульминацией сложной динамики являются биологическая эволюция и процессы мышления. Интуиция подсказывает, что существует четкий принцип, с помощью которого эти сверхсложные системы генерируют данные. Миллиарды лет назад существовали лишь частицы протоплазмы, затем появились все мы. Итак, информация создавалась и хранилась в нашей собственной структуре. Несомненно, что в ходе развития разума человека, начиная еще с детства, информация не только аккумулируется, но и порождается из тех связей, которых ранее не существовало». Такого рода разговоры могли вскружить голову даже здравомыслящему ученому-физику.


Члены нашей четверки были прежде всего экспериментаторами-жестянщиками, а уж потом философами. В их ли силах было перекинуть «мостик» от странных аттракторов, которые они столь хорошо знали, к опытам классической физики? Утверждать, что «направо — налево — направо — направо — налево — направо — налево — налево — налево — направо» обладает свойством непредсказуемости и способностью генерировать информацию, — это одно, а, взяв поток реальной информации, определить присущие ему показатели Ляпунова, энтропию и размерность — совсем другое. Но все же молодые физики из Санта-Круса чувствовали себя в окружении подобных идей куда более свободно, нежели их старшие коллеги. Они жили мыслями о странных аттракторах днем и ночью, убедив себя в том, что наблюдают их в развевающихся, сотрясающихся, пульсирующих и качающихся объектах повседневной жизни.

Сидя в кафе, они забавлялись тем, что спрашивали: далеко ли отсюда находится ближайший странный аттрактор? Уж не то ли это дребезжащее автомобильное крыло? Или флаг, трепещущий от легкого ветерка? Дрожащий лист на ветке? «Вы не увидите объект до тех пор, пока верно выбранная метафора не позволит воспринять его», — замечал Шоу, вторя Томасу С. Куну. Вскоре их друг Билл Бёрк, занимавшийся теорией относительности, окончательно убедился, что спидометр его машины работает в свойственной странному аттрактору нелинейной манере. Шоу, приступая к экспериментальному проекту, который займет его на ближайшие несколько лет, выбрал самую простую динамическую систему, какую только мог себе представить физик, — подтекающий кран. Большинство людей полагают, что в поведении этой системы непременно обнаруживается периодичность, но, как свидетельствуют эксперименты, это не совсем верно. «Перед нами простой пример системы, которая переходит от периодичного поведения к непериодичному, — объяснял Шоу. — Если немного приоткрыть кран, дробь капель станет беспорядочной. Как выясняется, по прошествии небольшого периода времени ее уже нельзя предугадать. Таким образом, даже нечто простое, вроде водопроводного крана, может считаться вечно созидающим информацию объектом».

Казалось бы, о чем тут думать? Подтекающий кран порождает лишь капли, каждая из которых почти повторяет собой предыдущую. Однако для новоиспеченного исследователя хаоса этот объект заключает в себе два преимущества: во-первых, всякий мог его представить; во-вторых, поток информации одномерен настолько, насколько это возможно: ритмичная барабанная дробь отдельных капель измеряется во времени. Ни одним из перечисленных достоинств не обладали системы, которые позже изучались группой. Не были они присущи ни иммунной системе человека, ни сталкивающимся пучкам, которые необъяснимым образом снижали коэффициент полезного действия линейного ускорителя в Стэнфорде. Ученые-экспериментаторы вроде Либхабера и Суинни получали одномерный поток информации путем произвольного закрепления детектора в одной из точек чуть более сложной системы. В подтекающем кране единственная линия данных представляет собой все, что имеется в наличии. Это даже не постоянно меняющаяся вязкость или температура — это всего лишь момент падения капли.

Если физик-традиционалист попробует подступиться к такой системе, он, вероятно, начнет с того, что создаст максимально законченную ее модель. Процессы, управляющие формированием и падением капель, вполне понятны, хотя и не столь просты, как может показаться. Одним из немаловажных параметров является скорость течения жидкости. (Она была невысокой в сравнении со скоростью большинства гидродинамических систем. В эксперименте Шоу частота падения капель составляла от 1 до 10 в секунду, что соответствовало скорости течения жидкости из крана от 30 до 300 галлонов в две недели.) К другим параметрам относятся вязкость жидкости и поверхностное трение. Капля воды, висящая на кончике крана и готовая вот-вот сорваться вниз, принимает сложную трехмерную форму. Один только расчет ее конфигурации был, по выражению Шоу, «сродни высокому искусству». К тому же указанная форма далеко не статична. Капля подобна небольшому эластичному мешочку, обладающему поверхностным натяжением. Качаясь туда-сюда, он набирает массу и растягивается до тех пор, пока не минует критическую точку и не упадет. Если физик попробует построить полную модель падения капель, составит дифференциальные уравнения с подходящими граничными условиями и попытается затем решить их, он обнаружит, что оказался в непроходимом лесу.

Альтернативный подход к проблеме заключается в том, чтобы, забыв о физике, рассматривать только информацию — так, будто она исходит из некоего «черного ящика». Но что может сказать эксперт по динамике хаоса, имея перечень чисел, интервалов между падением отдельных капель? Как выяснилось, кое-какие методы анализа таких данных имелись и могли прояснить некие детали физической картины, что, собственно, стало решающим в деле применения хаоса к задачам реального мира.

Но Шоу, отвергнув крайности, начал с золотой середины. Он создал своеобразную пародию на завершенную физическую модель. Не принимая во внимание ни форму капель, ни их сложные движения в трех измерениях, он лишь грубо смоделировал падение капель — уподобил их грузу, который висит на равномерно удлиняющейся пружине. По мере возрастания веса пружина растягивается, и груз опускается все ниже. По достижении определенной точки часть груза, отломившись, отделяется. Какая именно часть отделится, по предположению Шоу, будет зависеть непосредственно от скорости падения груза в точке отрыва.

Потом, естественно, пружина с остатком груза подскочит вверх, производя те самые колебания, которые аспиранты при построении моделей описывают с помощью стандартных уравнений. Интересное свойство системы — единственное интересное свойство, определяющее нелинейный изгиб, который делает возможным хаотичное поведение, — заключалось в том, что момент отрыва следующей капли зависел от взаимодействия колебаний пружины с увеличением веса груза. Скачок вниз, вероятно, помогал грузу достичь точки отрыва гораздо быстрее, а движение вверх слегка замедляло этот процесс. В реальности не все капли, образуемые подтекающим водопроводным краном, имеют одинаковый размер. Он меняется в зависимости от скорости течения, а также от сжатия или растяжения «пружины». Если капля рождается при движении вниз, она срывается быстрее, в противном случае она сможет вобрать в себя немного больше жидкости, прежде чем упадет. Сконструированная Шоу модель была достаточно «примитивной», чтобы ее удалось описать тремя дифференциальными уравнениями — минимально необходимым для моделирования хаоса количеством, как наглядно продемонстрировали Лоренц и Пуанкаре. Но позволяла ли она генерировать сложность, равнозначную реальной? И являлась ли сия сложность хаотической?

Итак, Шоу сидел в лаборатории физического факультета. Над его головой располагалась большая пластмассовая емкость, от которой отходила трубка, спускавшаяся к латунной насадке. Капля, падая, пересекала луч света, фиксируемый фотоэлементом. Компьютер в соседней комнате регистрировал время совершения этого события. Одновременно Шоу ввел в аналоговый вычислитель три своих уравнения, которые начали генерировать поток модельных данных. Однажды он устроил на факультете демонстрацию — псевдоколлоквиум, по выражению Кручфилда (аспирантам не разрешалось устраивать официальные коллоквиумы). Шоу проиграл пленку с записью того, как капли выстукивают дробь на куске жестянки, и с помощью компьютера воспроизвел щелчки — аудиомодель падения капель. Он подошел к решению проблемы сразу с двух сторон, и слушатели смогли уловить некую структуру в неупорядоченной вроде бы системе. Но для дальнейшего продвижения вперед был нужен способ извлечения необработанных данных из любого эксперимента и возвращения к уравнениям и странным аттракторам, характеризующим хаос.

Будь система сложней, можно было бы прибегнуть к графической интерпретации, например устанавливающей связь между изменениями температуры или скорости, с одной стороны, и временем — с другой. Но подтекающий кран дает лишь последовательность временных периодов, поэтому Шоу попробовал применить технику, ставшую, пожалуй, наиболее ценным и значительным вкладом его группы в исследование хаоса. Она заключалась в реконструкции фазового пространства для невидимого странного аттрактора и подходила для любой последовательности данных. Чтобы отобразить информацию о подтекающем кране, Шоу начертил двухмерный график. По оси x он отмечал временные интервалы между падением первой и второй капель, а по оси y — второй и третьей и т. д. Если между падением двух капель проходило 150 миллисекунд и еще столько же времени разделяло падение второй и третьей капель, он наносил на график точку с координатами (150; 150).

И в этом заключалось все! Если утечка воды была регулярной (такое, как правило, случалось, когда вода текла медленно, а сама система находилась в «режиме водяных часов»), график выглядел довольно скучным. Точки попадали на одно и то же место, накладываясь друг на друга. Изображение сводилось к одной-единственной точке или почти к одной. В действительности же существовали различия между виртуальным и реальным кранами. Прежде всего на реальный кран влияли помехи. «Выяснилось, что эта штука — отличный сейсмометр, — комментировал Шоу, — весьма эффективный в усилении малых шумов». Большую часть работы исследователь проделывал по ночам, когда коридоры пустели. Шумы превращали точку, полученную теоретически, в слегка расплывчатое маленькое облако.

По мере роста скорости течения жидкости система проходила через удваивающие период бифуркации. Капли падали парами: один интервал составлял 150 миллисекунд, а следующий — уже 80. На графике возникали сразу две туманные области: одна с центром в точке (150; 80), а другая — с координатами (80; 150). Но истинный критерий проявился, когда система стала хаотической. Будь она по-настоящему беспорядочной, точки разбросало бы по всему графику и между двумя соседними интервалами не обнаруживалось бы связи. Но если в результатах опыта был скрыт странный аттрактор, он обнаружил бы себя намеком на структуру.

Зачастую, чтобы разглядеть структуру, необходимо трехмерное пространство, но это не представлялось сложным — описанная техника вполне поддавалась модификации для построения групп с большим числом измерений: вместо того чтобы отмечать на графике интервал n рядом с интервалом n+1, можно было отметить интервал n рядом с интервалом n+1 и рядом с интервалом n+2.

Это ухищрение как бы приравнивало три переменных к одной. Ученые верили, что порядок коренится в очевидной случайности и так или иначе даст о себе знать экспериментаторам. Проявится, даже если они не имеют представления, какие физические переменные следует измерять, или просто не могут определить их. Фармер пояснял: «Размышляя о той или иной переменной, нужно иметь в виду, что на ее эволюцию влияют любые взаимодействующие с ней переменные. Их значения так или иначе должны отразиться в истории ее развития. Каким-то образом они просто обязаны оставить в ней свой след». Картины, полученные Шоу для подтекающего крана, наглядно иллюстрировали данное утверждение. На них, скажем, появлялись объекты (особенно в трех измерениях), подобные петлям дыма, какие оставляет на небе неуправляемый самолет. Теперь Шоу мог сопоставить две диаграммы — экспериментальную и выданную аналоговым компьютером. Реальные данные всегда оказывались менее ясными, как бы «смазанными» внешними помехами, и все-таки структура просматривалась — в этом нельзя было ошибиться. Группа динамических систем начала сотрудничать с такими опытными экспериментаторами, как Гарри Суинни, который перешел в Техасский университет, в Остине. Вскоре молодые исследователи научились устанавливать странные аттракторы для всех типов систем путем внедрения информации в фазовое пространство с достаточным числом измерений. Затем Флорис Такенс предложил математическое обоснование этой весьма эффективной техники воссоздания фазового пространства аттрактора из потока реальных данных. Как позже обнаружили многие ученые, данная методика выявляет различие между тривиальными помехами и хаосом, но в не известном ранее смысле, как упорядоченный беспорядок, созданный элементарными процессами. Информация, которая на самом деле случайна, остается произвольно «разбросанной», а хаос — детерминистский и созданный по некоему образцу — стягивает данные в видимые формы. Из всех возможных путей беспорядка природа благоволит лишь к немногим.


Переход от бунта к благочинной физике оказался небыстрым. Время от времени, сидя в кафе или работая в лаборатории, тот или другой член группы изумлялся, что научным фантазиям не положен предел. «Господи, мы все еще занимаемся этим, и сие все еще имеет смысл! — изумлялся Джим Кручфилд. — Мы все еще здесь. Но как далеко зайдем?»

Основную поддержку группе оказывали Ральф Абрахам, протеже Смэйла с математического факультета, и Билл Бёрк с факультета физики, который собственноручно собрал вычислительную машину — «царя аналоговых компьютеров», чтобы группа могла заявить свои притязания хотя бы на эту часть факультетского оборудования. Отношение остальных было куда сложнее. Несколько лет спустя некоторые профессора резко отрицали, что группе приходилось сталкиваться с безразличием или враждебностью со стороны факультета. Сами молодые ученые столь же ожесточенно реагировали на попытки задним числом пересмотреть роль запоздалых неофитов хаоса. «У нас не было научного руководителя, и никто не говорил нам, что надо делать, — заявил Шоу. — Мы сами годами играли роль консультантов, и это продолжается по сей день. В Санта-Крусе наши исследования никогда не финансировались, и каждый из нас довольно долгое время работал бесплатно. Мы постоянно были стеснены в средствах, не имели ни интеллектуального, ни какого-либо иного руководства».

С точки зрения другой стороны, факультет долго мирился с исследованиями, которые отнюдь не обещали вылиться во что-либо существенное, и даже содействовал им. Руководитель Шоу продолжал выплачивать ему стипендию еще год после того, как его протеже оставил физику низких температур. Никто не запрещал исследований хаоса. В худшем случае факультет был обескуражен, но сохранял благожелательность. Каждого из членов группы время от времени увещевали с глазу на глаз, что если капризы имеющих докторскую степень еще можно как-то оправдать, то аспирантам никто не поможет найти работу по несуществующей специальности. На факультете им втолковывали, что они переживают лишь мимолетное увлечение, но что будет потом? Однако за пределами лесистого холма хаос уже обретал ярых сторонников, и Группа динамических систем должна была присоединиться к ним.

Однажды университет посетил Митчелл Файгенбаум, заехавший туда во время своего лекционного турне, которое призвано было ознакомить ученых с прорывом в область всеобщности. Как всегда, его выступления являли собой малопонятные экскурсы в математику. Теория групп перенормировки представлялась неким эзотерическим элементом физики твердого тела, которую аспиранты Санта-Круса не изучали. Кроме того, молодых физиков больше интересовали реальные системы, нежели простые одномерные модели. Тем временем Дойн Фармер, прослышав, что математик Оскар Е. Ленфорд-третий занимается исследованиями хаоса в университете Беркли, отправился на встречу с ним. Ленфорд, вежливо выслушав гостя, заявил, что обсуждать им нечего. Он пытался разобраться с теориями Файгенбаума.

«Господи! Где его чувство масштаба? — думал Фармер. — Он кружится по крохотной орбите, а мы между тем изучаем теорию информации, которая столь глубока. Разбираем хаос на части, чтобы увидеть, что двигает им. Пытаемся связать метрическую энтропию и показатели Ляпунова с более привычными статистике мерами…»

При встрече с Фармером Ленфорд не подчеркивал значения всеобщности, и только позже до молодого физика дошло, что собеседник просто обошел данный вопрос. «Я был наивен, — признавался Фармер. — Сама идея универсальности стала огромным достижением. Сделанное Файгенбаумом задало работу целой армии ученых, занятых разного рода критическими явлениями.

Раньше представлялось, что нелинейные системы необходимо рассматривать последовательно. Мы пытались подобрать нужный язык, чтобы описать их, охарактеризовать количественно. Большинству, однако, казалось, что нужно применять именно последовательный подход. Мы не видели способа классифицировать системы и найти решения, подходящие для целого класса объектов, как делается в отношении систем линейных. Всеобщность позволяла вскрыть свойства, идентичные для всех явлений данного класса, т. е. предсказуемых характеристик. Вот почему она была по-настоящему важной.

Имелся и социологический фактор, подливавший масла в огонь. Файгенбаум выразил результаты своих исследований на языке групп перенормировки. Он позаимствовал инструмент, которым в совершенстве владели исследователи критических явлений. Эти парни переживали нелегкие времена. Им казалось, что нет больше интересных вопросов, за которые они могли бы взяться. Они искали, куда бы приложить свои знания. И тут появляется Файгенбаум и указывает очень важную область приложения усилий. Он открыл новою дисциплину!»

Впрочем, молодые ученые из Санта-Круса сами вскоре стали известными. Их звезда начала восходить после внезапного появления группы на конференции по физике твердого тела, проходившей в середине зимы 1978 г. в Лагуна-Бич и организованной Стэнфордским университетом при содействии Бернардо Губермана. Никто их туда не приглашал, но они все же отправились в путь, в огромном «форде» 1959 г. выпуска, принадлежавшем Шоу (на таких машинах ездили фермеры). Молодые люди привезли кое-какое оборудование, в том числе огромный телевизионный монитор и видеофильмы. Когда один из приглашенных докладчиков в последнюю минуту отменил свое выступление, вместо него слово предоставили Шоу. Момент был выбран как нельзя лучше: о хаосе уже толковали вполголоса, но лишь немногие физики, приехавшие в Лагуна-Бич, знали, что он собой представляет.

Итак, Шоу начал с объяснения того, что такое аттрактор в фазовом пространстве: сначала фиксированные точки (процесс останавливается); затем циклические картины (процесс подвержен колебаниям); затем странные аттракторы (непредсказуемый процесс). Он продемонстрировал свою компьютерную графику на видеопленке. («Аудиовизуальные средства дали нам ощутимые преимущества, — отмечал потом Шоу. — Нам удалось буквально загипнотизировать всех вспыхивающими огоньками».) В своем докладе он коснулся аттрактора Лоренца и подтекающего крана, объяснил геометрию — как растягиваются и складываются различные формы и что это значит на грандиозном языке теории информации. Наконец, дабы закрепить впечатление, он сказал несколько слов об изменяющихся парадигмах. Выступление обернулось потрясающим триумфом, причем в аудитории находились некоторые члены физического факультета Санта-Круса, впервые узревшие хаос глазами своих юных коллег.

В 1979 г. группа в полном составе посетила посвященное хаосу заседание Академии наук Нью-Йорка, но теперь уже в качестве законных участников. Новая дисциплина росла со скоростью взрывной волны. Если в 1977 г. встреча была посвящена Лоренцу и на нее приехали десятки специалистов, то теперь главной фигурой стал Файгенбаум, а число участников исчислялось уже сотнями. Там, где двумя годами ранее Роберт Шоу тщетно пытался отыскать машинистку, чтобы подсунуть свой печатный текст под дверь какому-нибудь специалисту, Группа динамических систем шлепала статьи со скоростью печатного станка, причем подписывали их молодые физики всегда вместе.

Но союз четырех не мог существовать вечно. Чем ближе становились молодые исследователи к реальному научному миру, тем неизбежнее был распад сообщества. Однажды позвонил Бернардо Губерман. Ему нужен был Роберт Шоу, но на месте оказался только Кручфилд. Звонивший нуждался в соавторе, чтобы написать краткую и несложную статью о хаосе. Кручфилда, самого младшего в группе, уже не устраивала отведенная ему роль «хакера». Он начинал понимать, что в одном отношении факультет абсолютно прав: рано или поздно каждый из членов группы начнет работать самостоятельно. К тому же Губерман был весьма искушен в профессии физика, чего так недоставало аспирантам, и, что самое важное, он знал, как разработать известную проблему с максимальной отдачей. Когда Губерман впервые увидел лабораторию группы, у него появились определенные сомнения. «Вы понимаете, все выглядело таким забавным, словно ты в машине времени перенесся в пору детства и вновь ощутил атмосферу шестидесятых». И все-таки ему был нужен аналоговый компьютер, а Кручфилд сумел, невзирая на занятость, выполнить на нем исследовательскую программу Губермана. В этом деле коллектив становился уже помехой. «Парни захотят поучаствовать», — заметил как-то Кручфилд, но Губерман отказал: «Это не просто доверие, это еще и ответственность. Допустим, что положения статьи окажутся неверными. Будете ли вы винить в этом коллектив? Я не его часть». Для работы ему требовался лишь один партнер.

Результат оправдал ожидания Губермана. Его первая статья о хаосе была опубликована в ведущем американском журнале, посвященном открытиям в области физики, — в «Письмах в „Физическое обозрение“». В среде ученых это считалось выдающимся достижением. «Нам все казалось совершенно очевидным, — вспоминал Кручфилд, — но Губерман понимал, что публикация вызовет широкий резонанс». Происшедшее вернуло группу к реальности, заставив мечтателей приспособиться к окружающему миру. Фармер рассердился, усмотрев в «дезертирстве» Кручфилда подрыв самого духа группы.

Но Кручфилд, нарушивший верность коллективу, оказался не одинок. Вскоре сам Фармер, а за ним и Паккард начали сотрудничать с авторитетными физиками и математиками: Губерманом, Суинни, Йорком. Идеи, зародившиеся в Санта-Крусе, легли кирпичиком в фундамент современной методологии исследования хаоса. Когда физик, имеющий массу данных, намеревался определить их размерность или энтропию, в ход шли методы, придуманные в годы подсоединения штекеров к аналоговому компьютеру модели «Systron-Donner» и напряженных наблюдений за экраном осциллографа. Метеорологи спорили о том, имеет ли хаос земной атмосферы и океанов бесконечное число измерений, как предполагала традиционная динамика, или каким-то образом следует странному аттрактору с малой размерностью. Экономисты, анализируя данные фондовой биржи, пытались найти аттракторы с размерностью 3,7 или 5,3. Чем ниже размерность, тем проще система. Необходимо было классифицировать и постичь множество математических свойств. Фрактальная размерность, размерность Хаусдорффа, размерность Ляпунова, размерность информации — тонкости указанных мер хаотической системы лучше всего объяснили Фармер и Йорк. Измерение аттрактора являлось «первым уровнем знаний, необходимых для характеристики его качеств». Данное свойство обеспечивало «количество информации, требуемое для того, чтобы установить положение точки на аттракторе с заданной точностью». Методы молодых физиков из Санта-Круса и их более старших коллег связали указанные идеи с другими важнейшими характеристиками систем: степенью уменьшения предсказуемости, коэффициентом потока информации, тенденцией порождения смешения. Иногда ученые, используя эти методы, обнаруживали, что наносят данные на графики, рисуют маленькие квадратики, подсчитывая количество единиц информации в каждом из них. Но даже такая довольно примитивная техника делала хаотичные системы доступными для научного осмысления.

Тем временем исследователи, научившись распознавать странные аттракторы в развевающихся флагах и дребезжащих спидометрах, сочли необходимым найти признаки детерминистского хаоса во всей вновь публикуемой литературе по физике. Необъяснимые шумы, удивительные колебания, регулярность, смешанная с неупорядоченностью, включались в статьи экспериментаторов, работавших буквально со всем, начиная от ускорителей частиц и заканчивая лазерами и сверхпроводниками Джозефсона. Специалисты по хаосу присваивали эти проблемы себе, объявляя непосвященным: «Ваши проблемы на самом деле наши». «В нескольких опытах по осциллирующим сверхпроводникам Джозефсона обнаружились удивительные, порождающие шум явления, — так начиналась статья, — которые не могут быть объяснены в терминах тепловых колебаний».

Когда коллектив прекратил свое существование, некоторые из членов факультета также обратились к изучению хаоса. Тем не менее другие физики, оглядываясь на прошлое, чувствовали, что Санта-Крус упустил шанс стать национальным центром по изучению нелинейной динамики, какие вскоре появились в других университетах. В начале 80-х годов члены Группы динамических систем завершили учебу и разъехались. Шоу закончил свою диссертацию в 1980 г., Фармер — в 1981-м, Паккард — в 1982-м. Труд Кручфилда — переложение одиннадцати статей, уже напечатанных в журналах по физике и математике, — появился в 1983 г. Он продолжил работу в университете Беркли, в Калифорнии. Фармер присоединился к теоретическому отделу лаборатории Лос-Аламоса, а Паккард и Шоу уехали в Институт перспективных исследований в Принстоне. Кручфилд изучал видеоизображения петель обратной связи, Фармер вспахивал плодородные нивы, моделируя сложную динамику иммунной системы человека, Паккард исследовал пространственный хаос и образование снежинок, и только Шоу, казалось, не испытывал ни малейшего желания влиться в магистральное течение. Его сколько-нибудь заметный вклад в науку ограничивается лишь парой статей. Одна подарила ему путешествие в Париж, другая (работа о подтекающем кране) подвела итог всем его исследованиям в Санта-Крусе. Несколько раз Шоу был близок к тому, чтобы вообще уйти из науки. Как заметил один из его друзей, он осциллировал.







 


Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх