• Неожиданные решения задач о геометрических телах и фигурах
  • Как разделить головку сыра
  • Невидимые размеры
  • Пасутся кони на другом поле
  • Невиданный меч
  • Пари на полюсе
  • Экономия на спичках
  • Хитроумные разбиения
  • Мисс Евклид и ее кубики
  • По ковровой дорожке
  • Торт для именинницы
  • Глава 2

    Геометрические находки

    Неожиданные решения задач о геометрических телах и фигурах

    Геометрия занимается изучением свойств тел и фигур, хотя такое определение настолько широко, что почти лишено смысла. Так, оно позволяет считать геометром члена жюри любого конкурса красоты, поскольку тот судит о «свойствах тел и фигур», хотя под телами и фигурами он понимает нечто иное, чем геометр. Когда о какой-нибудь линии кто-либо замечает, что она необычайно изящна или выразительна, то, хоть речь идет о кривой, то есть объекте, действительно изучаемом в геометрии, само высказывание относится скорее к области эстетики, чем к математике.

    Попробуем уточнить, что такое геометрия, и определим ее с помощью такого понятия, как симметрия. Под симметрией принято понимать такое преобразование фигуры, которое оставляет фигуру неизменной. Например, буква H симметрична относительно поворота на 180°. Это означает, что если букву H повернуть на 180° (поставить «вверх ногами»), то она перейдет в фигуру, неотличимую от буквы H в исходном положении (разумеется, при условии, если перекладина в букве H находится строго посредине). Слово «AHA», стоящее на обложке этой книги, обладает зеркальной, или двусторонней симметрией: если приставить к нему справа или слева зеркало, то зеркальное отражение слова будет неотличимо от оригинала.

    Любой раздел геометрии можно определить как науку о свойствах фигур, не изменяющихся при определенных преобразованиях симметрии. Например, евклидова геометрия на плоскости занимается изучением свойств, остающихся неизменными (инвариантных) при движении фигуры по плоскости, поворотах, зеркальных отражениях и равномерных сжатиях и растяжениях. Аффинная геометрия занимается изучением свойств, инвариантных относительно «перекашивания» фигуры. Проективная геометрия изучает свойства, инвариантные относительно проецирования. Топология имеет дело со свойствами, которые сохраняются неизменными, когда фигура претерпевает сколь угодно сильные искажения без разрывов и склеиваний, аналогичные деформациям фигуры, изготовленной из гибкого, растяжимого и прочного материала.

    Хотя геометрические мотивы встречаются во всех главах нашей книги, в этой главе мы собрали задачи, в которых геометрический аспект имеет явное преимущество перед всеми остальными. При отборе предпочтение отдавалось таким задачам, которые при надлежащем подходе (и «везении») допускают простые и ясные решения. Первая же задача — о разрезании сыра — отчетливо показывает, как тесно переплетаются даже в простейших задачах «сферы влияния» самых различных разделов математики: ее можно рассматривать как задачу по планиметрии, стереометрии, комбинаторике, теории чисел. В этой же задаче нетрудно усмотреть и зачатки исчисления конечных разностей.

    «Пасутся кони на другом поле», как ни странно, — топологическая задача. Метод нитей и пуговиц позволяет свести ее к задаче о точках на простой замкнутой кривой. Форма замкнутой кривой для решения задачи не имеет ни малейшего значения — важны лишь топологические свойства кривой. Мы приводим решение задачи для случая, когда точки расположены на окружности, но с тем же успехом мы могли взять кривую, образующую периметр квадрата или треугольника.

    Следующие две задачи («Невиданный меч» и «Пари на полюсе») снова выводят нас из плоскости в евклидову геометрию трехмерного пространства. При взгляде на маршруты полетов невольно вспоминается другая знаменитая задача о путях — задача о четырех черепахах. На ее примере мы видим, что иногда простые идеи позволяют избежать применения несравненно более сложных методов математического анализа. Задача об искусном землемере Рэнсоме возвращает нас на плоскость и знакомит с такими главами евклидовой геометрии, как теория разрезаний и разбиений. Задачи на разбиение земельных участков относятся к так называемой комбинаторной геометрии плоскости. Задача мисс Евклид о разрезании куба принадлежит к комбинаторной геометрии пространства.

    Задача о ковровом покрытии для кольцевого коридора и ее трехмерный аналог — задача о просверленной насквозь сфере — могут служить прекрасными примерами того, как некая величина, которая, казалось бы, должна изменяться в зависимости от значений других параметров, в действительности принимает лишь одно значение. Кто мог бы ожидать, что при просверливании в сфере сквозного цилиндрического канала заданной длины объем оставшейся части сферы при постоянной длине канала не зависит ни от радиуса сферы, ни от диаметра канала? Впервые столкнувшись с теоремой о таком удивительном постоянстве, математик выразит свое изумление и почти заведомо скажет: «Красивый результат!»

    Что именно имеют в виду математики, называя теорему или формулу красивой, точно не известно. Красота в их понимании каким-то образом связана с неожиданной простотой, но сколь ни трудно объяснить, в чем состоит эстетическая привлекательность математического утверждения, все математики умеют отличать красивую теорему или изящное доказательство с такой же легкостью, с какой мы отличаем красавицу от дурнушки. Геометрия, изучающая объекты, доступные не только мысленному взору, но и непосредственному созерцанию, необычайно богата красивыми теоремами и доказательствами. Некоторые из них вы встретите в этой главе.

    Как разделить головку сыра

    Кухня в ресторане «У Джо» оставляет желать лучшего, зато выбор сыров у Джо отменный.

    Цилиндрическая головка сыра таит в себе немало интересных задач на разрезание. Проведя лишь 1 прямолинейный разрез, ее нетрудно разделить на 2 одинаковые части.

    Два прямолинейных разреза позволяют разделить головку сыра на 4 одинаковые части, а 3 прямолинейных разреза — на 6 равных частей.

    Однажды официантка Рози попросила Джо разрезать сыр на 8 одинаковых частей.

    Джо. Хорошо, Рози. Сделать это совсем нетрудно. Я разделю сыр на 8 одинаковых частей четырьмя прямолинейными разрезами.

    Подавая сыр на стол, Рози вдруг поняла, что Джо мог действовать и более экономно: чтобы разделить головку на 8 одинаковых частей, достаточно провести лишь 3 прямолинейных разреза.

    Как это сделать?

    Три разреза?

    Рози пришло в голову, что цилиндрическая головка сыра представляет собой не плоскую фигуру, а тело, которое можно разрезать по горизонтальной плоскости, проходящей через его центр. На рис. 1 показано, как тремя разрезами разделить сыр на 8 одинаковых порций. В этом решении предполагается, что все три разреза проведены одновременно. Если же разрезы проводить последовательно, один за другим, и перед каждым разрезом переставлять куски сыра наиболее удобным образом, то тремя разрезами сыр можно разрезать по-другому (так, как он разрезан^на подносе в руках Рози): для этого один из двух кусков, получившихся после первого разреза, нужно поставить на другой, провести еще один разрез, взять одну из «двухэтажных» половин, поставить на другую и провести третий разрез. После третьего разреза головка сыра окажется разделенной на 8 одинаковых порций.

    Решение Рози столь просто, что кажется почти травиальным, и тем не менее оно может служить хорошим введением в серию важных задач на разрезание, теория которых связана с исчислением конечных разностей, а многие доказательства проводятся методом математической индукции. Конечные разности служат мощным средством получения формул общих членов числовых последовательностей. Интерес к числовом последовательностям неуклонно возрастает, что объясняется по крайней мере двумя причинами: во-первых, тем, что числовые последовательности встречаются во многих числовых задачах, и, во-вторых, быстротой, с которой ЭВМ позволяют производить над числовыми последовательностями любые действия.

    Изобретенный Рози первый метод разрезания сыра (без перекладывания кусков) состоит в проведении прямолинейных или, лучше сказать, плоских разрезу проходящих через центр верхнего основания готовки сыра, плоского, как у круглого пирога. Выясним, какие числовые последовательности может порождать разрезание верхней поверхности сыра прямыми, пересекающимися в центре (ясно, что n одновременно проведенных разрезов позволяют разделить сыр не более чем на 2n кусков).

    Можно ли считать, что 2n — максимальное число частей, на которые n прямых, проходящих через одну точку, могут разделить любую плоскую фигуру, ограниченную простой замкнутой кривой? Нет: нетрудно построить невыпуклую фигуру (например, такую, как на рис. 2), которую одной прямой можно разделить на значительно большее число частей. А можно ли построить фигуру, которую одной прямой можно было бы разделить на любое конечное число конгруэнтных частей? Если да, то какими свойствами должен обладать периметр фигуры, чтобы одной прямой от нее можно было отсечь п конгруэнтных частей?

    Задача о разрезании пирога или сыра становится еще более интересной, когда линии разреза не пересекаются в одной точке. Нетрудно видеть, что начиная си = 3 при таком способе разрезания исходный круг будет распадаться более чем на 2n частей (пока нас не интересует, будут ли эти части конгруэнтными или равновеликими). На рис. 3 показано, каким образом достигается максимальное число частей при числе разрезов n, равном 1, 2, 3 и 4 (круг делится соответственно на 2, 4, 7 и 11 частей).

    Числа 2, 4, 7 и 11 образуют отрезок известной последовательности с общим членом, задаваемым формулой

    где n — число разрезов. Полагая п = 0, 1, 2, …, 9, получаем первые десять членов последовательности: 1, 2, 4, 7, 11, 16, 22, 29, 37, 46…. Первые разности равны 1, 2, 3, 4, 5, 6, 7, 8, 9, …, вторые разности равны 1, 1, 1, 1, 1, 1, 1, 1, … . Постоянство вторых разностей основательно подкрепляет нашу догадку о тем, что общий член этой последовательности квадратичен по n.

    Мы говорим о догадке потому, что формула, получаемая при помощи конечных разностей, может оказаться «ограниченно применимой» — порождать лишь часть членов бесконечной последовательности. Применимость формулы «конечно-разностного происхождения» ко всем без исключения членам числовой последовательности каждый раз необходимо доказывать особо. В случае круглого пирога такое доказательстве действительно существует. Его нетрудно найти, если воспользоваться методом математической индукции.

    После этих замечаний, носящих сугубо предварительный характер, вы достаточно вооружены, чтобы смело вступить на неизведанную территорию и проложить по ней десятки увлекательных маршрутов в самых разных направлениях, многие из которых приводят к необычным числовым последовательностям, формулам и доказательствам методом математической индукции. Определить максимальное число частей, на которые можно разделить:

    1) подковообразный пирог n прямыми;

    2) головку сыра в форме шара или цилиндра n плоскими разрезами;

    3) пирог n круговыми разрезами, проводимыми специальным ножом;

    4) пирог, испеченный в форме кольца (с круглым отверстием посредине) n прямыми;

    5) бублик (тор) n плоскими разрезами.

    Во всех этих задачах предполагается, что разрезы проводятся одновременно. Как изменятся ответы, если будет разрешено проводить разрезы последовательно и после каждого разреза перекладывать образовавшиеся куски?

    Невидимые размеры

    В центре городского парка находится, круглая площадка для игр. Магистрат вознамерился устроить на этой площадке бассейн в форме ромба.

    Мэр города Дорис Райт, рассмотрев представленные архитектором проекты, высказала свое мнение.

    Мэр Райт. Мне нравится вот этот проект бассейна, облицованного красным кафелем. Какова длина каждой стороны ромба?

    Вопрос мэра поставил в тупик архитектора Фрэнка Лойда Ронга.

    Мистер Ронг. Сейчас прикину. Расстояние от A до B равно 5 м, а расстояние от B до C — 4 м. По этим данным можно найти длину стороны BD, например вычислить ее по теореме Пифагора.

    Мистер Ронг приступил было к вычислениям, как вдруг достопочтенную миссис Райт осенило.

    Мэр Райт. Есть идея! Длина стороны бассейна — ровно 9 м. Тут и считать нечего.

    Мистер Ронг. Вы абсолютно правы!

    Что позволило мэру и архитектору с такой легкостью найти длину стороны бассейна?

    Диагональ и радиус

    Миссис Райт заметила, что каждая сторона бассейна совпадает с диагональю некоего прямоугольника, другая диагональ которого равна радиусу круглой площадки для игр. Диагонали прямоугольника равны. Следовательно, длина стороны бассейна равна радиусу круглой площадки для игр. А поскольку этот радиус составляет 5 + 4 = 9 м, то и длина каждой стороны бассейна равна 9 м. Теорема Пифагора не понадобилась.

    Вы сможете лучше оценить все остроумие догадки миссис Райт, если попытаетесь вычислить длину стороны бассейна более традиционным способом. Если вы захотите воспользоваться только теоремой Пифагора и подобием треугольников, то решение получится чрезмерно громоздким. Известная из планиметрии теорема о пересекающихся хордах, гласящая, что произведение длин отрезков, на которые точка пересечения делит хорды, одинаково для всех хорд, пересекающихся в данной точке, позволяет несколько сократить решение. Применяя эту теорему, вы числите высоту прямоугольного треугольника (составляющего четверть бассейна), равную v56. Затем по теореме Пифагора, зная два катета, вы найдете гипотенузу, равную 9 м.

    С задачей о бассейне, так изящно решенной миссис Райт, тесно связана знаменитая задача о водяной лилии, встречающаяся в одном из произведений Лонгфелло. Когда стебель лилии стоит вертикально, цветок ее на 10 см возвышается над поверхностью озера. Если лилию оттянуть в сторону, не давая стеблю провиснуть, то цветок ее коснется воды в точке, отстоящей на 21 см от того места, в котором выходил из воды прямостоящий стебель. Какова глубина озера в том месте, где растет лилия?

    Задачу Лонгфелло нетрудно решить, если начертить схему, изображенную на рис. 4. По существу эта схема ничем не отличается от проекта бассейна, представленного архитектором Ронгом. Требуется определить длину отрезка x. Как и задачу о длине стороны бассейна, задачу о лилии можно решить разными способами. Но если воспользоваться теоремой о пересекающихся хордах, то ответ получается особенно легко и быстро.

    А вот еще одна замечательная задача о бассейне, трудная с виду, но легко решаемая, если сообщить, в чем ее изюминка. Дельфин находится у западного края круглого бассейна в точке A, проплывает по прямой 12 м и упирается «носом» в край бассейна в точке B. Повернувшись, он проплывает по прямой в другом направлении 5 м и снова касается края бассейна в точке C, диаметрально противоположной точке A. Какое расстояние пришлось бы преодолеть дельфину, если бы он из точки A поплыл прямо в точку C?

    Задача о дельфине решается легко и просто, если воспользоваться теоремой о том, что любой вписанный угол, опирающийся на диаметр окружности, — прямой, и заметить, что угол ABC именно такой угол. Катеты прямоугольного треугольника ABC равны 5 м и 12 м. Следовательно, гипотенуза равна 13 м. Мораль всех этих задач ясна: во многих случаях геометрическую задачу можно решить до смешного просто, если вовремя вспомнить соответствующую теорему евклидовой геометрии.

    Пасутся кони на другом поле

    На заседании шахматного клуба мистер Бишоп предложил следующую задачу.

    Мистер Бишоп. Как поменять позиции черных и белых коней за наименьшее число ходов?

    Один из членов клуба сделал 2 первых хода так, как показано на диаграмме. Переставить белых коней в верхние углы доски, а черных — в нижние он сумел за 24 хода.

    Другому члену клуба удалось решить задачу мистера Бишопа за 20 ходов.

    Но никому не удавалось решить задачу менее чем за 18 ходов, пока не появилась Фанни Фиш.

    Мисс Фиш. Есть идея! Я знаю, как решить задачу за 16 ходов, и могу доказать, что ее нельзя решить за меньшее число ходов.

    Прежде чем приступить к объяснению, Фанни начертила диаграмму, на которой отрезками прямых изображены возможные ходы каждого коня.

    Мисс Фиш. Представьте себе, что отрезки прямых — это нити, а восемь клеток нанизаны на них, как бусины, и их можно расположить по окружности.

    Мисс Фиш. Каждый ход на доске соответствует вполне определенному ходу на окружности. Чтобы поменять позиции коней, их необходимо переместить по окружности, двигая в одном направлении.

    Мистер Бишоп. Вы совершенно правы, Фанни. Чтобы перейти на новую позицию, каждый из 4 коней должен совершить по 4 хода. Таким образом, задачу можно решить за 16 ходов, а более экономного решения не существует.

    Фанни заменила одного из белых коней красным и задала членам шахматного клуба новую задачку: как поменять местами белого и красного коня за наименьшее число ходов?

    Как, по-вашему, почему Фанни улыбалась, предлагая эту задачку?

    Шахматные кони и звездчатые фигуры

    Фанни решила шахматную задачу, сведя ее к изоморфной задаче, допускавшей простое (хотя и далеко не тривиальное!) решение. Поставленную Фанни задачу можно решить тем же методом. Соединив нитями клетки, занятые конями, и развернув получившееся «ожерелье» в окружность, мы увидим, что кони нанизаны на нити в следующем порядке: черный, черный, красный, белый. Фанни улыбалась, так как понимала, что переставить красного и белого коней невозможно: они следуют друг за другом в неизменном порядке, потому что ни один конь не может перепрыгнуть через другого коня, если они оба движутся по кругу (в любом направлении) и обгон запрещен. Понятно ли вам почему?

    При движении по окружности по часовой стрелке белый конь всегда следует непосредственно за красным. Если бы белый и красный кони могли поменяться полями, которые они занимали на доске с самого начала, то порядок следования был бы изменен на обратный и красный конь двигался бы по кругу непосредственно за белым. Ясно, что такое перестроение невозможно. Действительно, оно означало бы, что один из коней (либо белый, либо красный) перепрыгнул через двух черных коней. Сведя мини-шахматную задачу к топологической задаче о расположении четырех точек на простой замкнутой кривой, мы получили возможность весьма просто доказать, что решения исходной задачи не существует. Получить доказательство «несуществования» другим способом было бы чрезвычайно трудно. Попробуйте, и вы убедитесь в этом сами.

    Вам понравилась задача о перестановке шахматных коней? Вот еще одна такая задача, по трудности даже превосходящая обе предыдущие. Рассмотрим позицию на шахматной доске 3?4, изображенную на рис. 5. Как и прежде, трех черных и трех белых коней требуется поменять местами так, чтобы белые кони оказались на верхней горизонтали, а черные заняли нижнюю горизонталь, причем выполнить перестановку за наименьшее число ходов.

    В этом случае, как видно на рис. 6, изоморфный граф более сложен. Этот граф представляет собой диаграмму, на которой показаны все возможные ходы коней, Предположив, что вершины нашего графа — пуговицы или бусины, а ребра — нити, мы обнаружим, что развернуть его в окружность, как в предыдущей задаче, невозможно, но наш граф из нитей и пуговиц нам удастся уложить так, как показано на рис. 7. Числа на этом рисунке соответствуют номерам клеток на рис. 4 и 5.

    Ясно, что задача о перестановке шахматных коней на этом графе изоморфна исходной задаче, но решается несравненно легче. Удастся ли вам найти минимальное решение в 18 ходов?

    Метод нитей и пуговиц позволяет проанализировать одну старинную игру. Для нее нам понадобится особая «доска» — звездчатый граф, изображенный на рис. 8, и семь монет или небольших фишек.

    Игра состоит в следующем. Положив монету на любую вершину графа, вы можете сдвинуть ее вдоль черной ломаной линии (ребер графа) в любую другую вершину. После того как ход закончен, прикасаться к монете и перемещать ее в другую вершину запрещается.

    Затем вы кладете вторую монету на любую незанятую вершину графа и передвигаете ее вдоль ребер в любую другую незанятую вершину. Так вы продолжаете действовать до тех пор, пока все семь монет не займут свое место на вершинах графа.

    Очень скоро вы обнаружите, что расставить все семь монет удается, если действовать по тщательно продуманному плану: малейшая небрежность приводит к позиции, не позволяющей достичь в игре успеха. Не могли бы вы указать, каких правил следует придерживаться при расстановке и перемещении монет, чтобы вам неизменно сопутствовал успех?

    Звездчатый граф можно полностью «раскрыть» подобно графам в двух первых задачах о перестановке шахматных коней, его удается развернуть в окружность. После того как это сделано, семь монет нетрудно расположить на окружности и проанализировать, как они могут двигаться. Справиться с этой задачей можно многими способами. Одна из наиболее простых выигрышных стратегий состоит в том, чтобы делать любой ход первой монетой, а все следующие монеты ставить и передвигать всегда так, чтобы по окончании хода они заняли вершину, которую занимала в исходном положении предыдущая монета.

    Предложите сыграть в эту игру своим друзьям. Лишь очень немногие из них смогут расставить все семь монет, даже если вы один раз быстро продемонстрируете им, как следует играть.

    Невиданный меч

    Присмотритесь повнимательнее к этой картинке. Что художник нарисовал неправильно?

    Взгляните на меч в руке рыцаря: его невозможно вложить в ножны.

    Эти два меча (если только они не имеют утолщений) можно вложить в ножны соответствующей формы. Можете ли вы придумать еще какую-нибудь форму для меча и парных ему ножен?

    Вам пришла в голову мысль перейти от плоских кривых к пространственным? Оказывается, помимо двух традиционных форм мечей, вкладывающихся в ножны, тем же свойством обладают только мечи, выкованные в форме винтовой линии.

    Незаменимая кривая

    Винтовая линия играет важную роль в современной науке, — особенно в биологии и физике элементарных частиц. Молекулы ДНК имеют форму винтовой линии. В отличие от своих одно- и двумерных двоюродных сестер — прямых и окружностей — винтовая линия обладает «закрученностью», то есть может быть правой и левой. Прямая и окружность неотличимы от своих зеркальных отражений, но отличить винтовую линию от ее зеркального отражения не составляет ни малейшего труда. В зеркале винтовая линия, по выражению Алисы из Зазеркалья (Льюис Кэрролл), «идет наоборот».

    Существует множество примеров винтовых линий в природе и в повседневной жизни. Винтовая линия по традиции считается правой, если она закручивается по часовой стрелке по мере удаления от вас. Винты, болты и гайки, как правило, имеют правую нарезку. Винтовые лестницы, стебли сахарного тростника, пружины, волокна в канатах и кабелях и стружки могут закручиваться как вправо, так и влево.

    К числу примеров встречающихся в природе винтовых линий относятся рога многих животных, раковины морских моллюсков, гигантский зуб нарвала, ушная раковина человека, пуповина. В мире растений винтовая линия встречается в строении стеблей, побегов, усиков, семян, цветов, шишек, листьев и т. д. Взбираясь на вершину дерева или спускаясь с нее, белка описывает винтовую линию. Вылетая из пещеры, летучие мыши также движутся по винтовым линиям. Винтовые линии, навитые на конус, можно без труда обнаружить в таких атмосферных явлениях, как вихри или смерчи. Вода, стекая в раковине, также закручивается в воронку, сотканную из винтовых линий. Много других примеров винтовых линий вы найдете в книге М. Гарднера «Этот правый, левый мир»[3].

    Правильная винтовая линия — это кривая, навитая на круговой цилиндр под постоянным углом к образующим (напомним, что образующими называются прямые на поверхности цилиндра, параллельные его оси). Пусть ? — угол, под которым винтовая линия пересекает образующие цилиндра. При ? = 0° винтовая линия, как нетрудно видеть, вырождается в прямую, а при ? = 90° — в окружность.

    Аналитически в этом можно удостовериться, если записать параметрические уравнения винтовой линии и проварьировать входящий в них угол ? от 0° до 90°. И прямая, и окружность — предельные формы более общей пространственной кривой, получившей название винтовой линии. Правильная винтовая линия — единственная пространственная кривая постоянной кривизны. Этим и объясняется, почему мечи, вкладывающиеся в ножны, можно изготовить только в форме правильной винтовой линии (что выглядело бы несколько необычно) и двух ее предельных случаев — прямой и окружности.

    Проекция винтовой линии на плоскость, перпендикулярную ее оси, имеет форму окружности. Спроецировав винтовую линию на плоскость, параллельную оси, мы получим синусоиду. В этом нетрудно убедиться, если снова воспользоваться параметрическими уравнениями кривой. Многие свойства синусоиды можно изучать по ее близкой родственнице — винтовой линии.

    В этой связи мы хотим рассказать одну забавную историю-задачу, допускающую (при надлежащем подходе) очень простое решение. Внутри цилиндрической башни высотой 100 м ходит лифт. Снаружи башни имеется винтовая лестница, образующая с вертикалью постоянный угол ? = 60°. Диаметр башни 13 м.

    Однажды мистер и миссис Пицца поднялись на лифте на смотровую площадку, расположенную на вершине башни. Их сын Томато Пицца предпочел идти наверх пешком. Когда он добрался до смотровой площадки, вид у него был не блестящий.

    — Не мудрено, что ты устал, сынок, — заметил мистер Пицца. — Ведь тебе пришлось проделать вчетверо больший путь, чем нам, и все пешком.

    — Ты ошибаешься, папа, — ответил Том. — Я прошел лишь вдвое больший путь, чем вы проехали.

    Кто прав: Том или его отец?

    Кое-кто склонен думать, будто для того, чтобы вычислить длину винтовой лестницы, необходимо знать диаметр башни. В действительности информация о диаметре башни совершенно лишняя!

    Дело в том, что винтовую лестницу можно развернуть в гипотенузу прямоугольного треугольника с острым углом 30° и высотой 100 м, а гипотенуза такого треугольника вдвое больше высоты (катета, лежащего против угла 30°), Следовательно, прав был Том.

    Убедиться в этом вы можете, развернув какую-нибудь картонную трубку. Возможно, исход эксперимента несколько удивит вас: вы увидите, что длина шва (винтовой линии, как бы навитой на трубку) не зависит от диаметра цилиндра, в который скручен прямоугольный треугольник.

    Пари на полюсе

    Знаменитый игрок Дэн, по прозвищу Ставлю Доллар, сидел в баре со своим другом Диком, по профессии пилотом.

    Дэн. Дик, ставлю доллар, что ты не сможешь решить простой задачки. Самолет пролетает 100 км, держа курс на юг, затем 100 км на восток и 100 км на север, после чего оказывается в исходной точке. Откуда он вылетел?

    Дик. Принимаю пари, Дэн. Задачка твоя давно известна. Самолет вылетел с Северного полюса.

    Дэн. Правильно. Держи доллар. Ставлю еще доллар, что ты ни за что не догадаешься, откуда еще мог вылететь самолет.

    Дик погрузился в размышления.

    Дик. Другой точки, кроме Северного полюса, нет и быть не может, и я берусь доказать это. Предположим, что самолет вылетает из точки, расположенной между Северным полюсом и экватором.

    Дик. Ясно, что в этом случае конечная точка маршрута не может совпадать с исходной. Если же самолет вылетает из точки, расположенной на экваторе, то конечная точка маршрута оказывается примерно в 100 км от исходной точки.

    Дик. Если же самолет вылетает из точки, расположенной в южном полушарии, то конечная точка будет отстоять от исходной более чем на 100 км.

    Дэн. Может, ты хочешь поспорить на 2 доллара, что самолет не мог вылететь ниоткуда, кроме Северного полюса?

    Дик принял пари и проиграл. Почему?

    Предположим, что самолет стартовал из точки, расположенной на параллели А, отстоящей на расстояние 116 км от Южного полюса, и пролетел к югу 100 км.

    Пролетев 100 км на восток, он совершит полный оборот вокруг Южного полюса. Пролетев затем 100 км на север, он непременно вернется в исходную точку.

    Дик. Ты прав, вот твои 2 доллара.

    Дэн. Ставлю еще доллар, что, по-твоему, я не смогу указать других мест на земном шаре, вылетев откуда и пролетев сначала 100 км на юг, затем 100 км на восток и 100 км на север, самолет сможет вернуться в исходную точку. Под «другими местами» я понимаю точки, не лежащие на параллели А и не совпадающие с Северным полюсом.

    Дик. Тогда ставлю 50 долларов, что таких точек на земном шаре нет.

    Бедный Дик снова проиграл. Какую важную идею он упустил из виду?

    Откуда вылетать?

    Заключая второе пари, Дик упустил из виду весьма важное обстоятельство: точка, откуда вылетает самолет, может быть выбрана так близко от Южного полюса, что, пролетев 100 км на восток, он опишет вокруг полюса не один оборот, как в предыдущем решении, а два полных оборота. Так возникает новая параллель, все точки которой служат решениями исходной задачи. Аналогичным образом самолет может вылететь из любой точки еще меньшей окружности и, держа курс на восток, совершить три, четыре и т. д. оборота вокруг полюса. При любом целом положительном n можно указать соответствующую параллель, вылетев из любой точки которой и держа курс на восток, самолет совершит n оборотов вокруг полюса. Следовательно, точки, из которых может вылететь самолет, заполняют бесконечно много параллелей, стягивающихся к полюсу,

    А вот еще одна навигационная задача, связанная с замечательной кривой на сфере — локсодромой, или линией постоянного курса. Самолет вылетает из точки, расположенной на экваторе, и берет курс на северо-восток. Где закончится его полет, если запасы горючего можно считать неограниченными? Какова длина маршрута и как он выглядит?

    Возможно, вы удивитесь, когда узнаете, что маршрут полета имеет вид спирали, пересекающей все меридианы под одним и тем же углом и заканчивающейся на Северном полюсе. Такую кривую правильнее было бы рассматривать как винтовую линию, навитую на сферу, стягивающуюся к Северному полюсу и успевающую описать вокруг полюса бесконечно много витков. Если самолет условно принять за точку, то маршрут, хотя и успевает совершить бесконечно много оборотов вокруг полюса, имеет конечную длину, которая поддается вычислению. Следовательно, поддерживая в полете постоянную скорость, самолет достигнет Северный полюс за конечное время.

    При нанесении на плоскую карту форма локсодромы искажается в зависимости от выбора картографической проекции. На меркаторской проекции, известной по карте мира, локсодрома переходит в прямую. Именно поэтому меркаторская проекция находит столь широкое применение в решении навигационных задач. Если судно или самолет следуют постоянным курсом, то, чтобы проложить его на карте, достаточно провести прямую.

    А что произойдет, если самолет, взлетев с Северного полюса, возьмет курс на юго-запад? Эта задача обратна предыдущей. Полет, как и прежде, будет происходить по локсодроме, но сказать, где приземлится самолет в конце пути, мы не можем. В этом можно легко убедиться, обратив время: из какой бы точки, расположенной на экваторе, ни вылетел самолет, он, двигаясь вспять, неизменно окажется на Северном полюсе. Если же самолет, достигнув экватора, пересечет его и будет лететь тем же курсом, то локсодрома стянется к Южному полюсу.

    При проецировании на плоскость, касательную к полюсу (и параллельную плоскости экватора), локсодрома переходит в равноугольную, или логарифмическую, спираль. Эта спираль пересекает радиус-вектор под постоянным углом.

    Задача о четырех жуках, входит в сокровищницу занимательной математики. Она также связана с построением маршрутов и логарифмической спиралью, но допускает неожиданно простое решение, избавляющее от необходимости производить утомительные выкладки. Вы познакомитесь с ней, прочитав небольшой рассказ о семействе Пицца и их любимцах — четырех черепашках.

    Том Пицца, тренер и художественный руководитель черепашек, выдрессировал своих питомцев так, что Абнер (A) всегда полз к Берте, Берта (B) — к Чарлзу, Чарлз (C) — к Далиле (D) и Далила — к Абнеру. Однажды он расставил черепашек по углам квадратной комнаты так, что они образовали вершины квадрата ABCD, включил секундомер и принялся наблюдать за тем, что произойдет.

    — Интересно получается, сынок, — сказал мистер Пицца. — Каждая черепашка ползет прямиком к своему соседу справа. Все черепашки движутся с одинаковой скоростью и поэтому в любой момент времени находятся в вершинах некоторого квадрата (рис. 9).

    — И квадрат этот все время поворачивается и уменьшается, — добавил Том. — Смотри! Видишь? Черепашки сошлись в центре!

    Предположим, что каждая черепашка ползет с постоянной скоростью 1 см/с и что комната, где они находятся, имеет форму квадрата со стороной 3 м. Через сколько времени черепашки встретятся в центре комнаты? (Каждую черепашку мы условно принимаем за точку.)

    Мистер Пицца попытался было решить задачу, интегрируя по траектории черепашки, и уже достал из кармана программируемый микрокалькулятор последней модели, как вдруг миссис Пицца воскликнула:

    — Не нужно никакой высшей математики, Пеппероне! Задача решается очень просто! Черепашки встречаются в центре комнаты через 5 мин.

    Какая идея пришла в голову миссис Пицца?

    Рассмотрим каких-нибудь двух черепашек, расположенных в двух соседних вершинах квадрата, например Абнера и Берту. В каждый момент Берта движется под прямым углом к Абнеру, ползущему к ней, так как Абнер всегда ползет к Берте, а Берта всегда ползет к Чарлзу. Именно поэтому черепашки все время находятся в вершинах квадрата. Поскольку Берта никогда не ползет к Абнеру и не уползает от него, то ее движение не увеличивает и не уменьшает разделяющее их расстояние и при подсчете времени движением можно пренебречь. Дело обстоит так, как если бы Берта оставалась в своем углу комнаты, а Абнер полз к ней вдоль стенки.

    В этом и состоит ключ к решению задачи. Криволинейный путь Абнера должен совпадать по длине со стороной начального квадрата, а так как эта сторона равна 300 см и Абнер ползет со скоростью 1 см/с, то он доползет до Берты за 300 с, или 5 мин. То же можно сказать и о всех остальных черепашках. Следовательно, все черепашки встречаются в центре комнаты по истечении 5 мин.

    При помощи микрокалькулятора можно построить траектории черепашек — кривые, описываемое вершинами вращающегося и одновременно сжимающегося квадрата, если нанести на диаграмму последовательные положения вершин через определенные промежутки времени. Результат такого рода выкладок представлен на рис. 10.

    Можете ли вы обобщить задачу на случай, когда в исходной позиции точки расположены в вершинах любого правильного многоугольника? Начните с равностороннего треугольника, затем перейдите к правильному пятиугольнику и т. д. Можете ли вы указать общую формулу, позволяющую по известной длине стороны исходного многоугольника вычислять длину пути? Что произойдет в предельном случае, когда бесконечно много точек (черепашек) начинают двигаться по направлению к своим соседям справа (или слева) и вершин многоугольника с бесконечным числом сторон? Встретятся ли они когда-нибудь? Предположим теперь, что исходные многоугольники неправильные. Что произойдет, например, если четыре черепашки займут исходные позиции в вершинах прямоугольной, а не квадратной комнаты?

    Предположим, что черепашки Тома Пиццы после встречи в центре комнаты расползаются, причем каждая из них движется по прямой от своего соседа слева? Можно ли утверждать, что черепашки непременно расползутся по углам комнаты?

    Экономия на спичках

    Однажды Мабель вздумала показать проф. Квибблу головоломку из спичек.

    Мабель. Нужно построить четыре одинаковых по размеру квадрата, передвинув только 2 спички. Ломать спичку, укладывать их по две или так, чтобы они пересекались, не разрешается.

    Проф. Квиббл. Ваша головоломка, милая Мабель, известна давным-давно. Чтобы решить ее, нужно передвинуть вот эти 2 спички.

    Затем проф. Квиббл отложил 4 спички, после чего на столе осталось 12 спичек.

    Проф. Квиббл. Попробуйте составить из этих 12 спичек 6 единичных квадратов (со стороной, равной длине спички).

    Сколько Мабель ни билась, решить головоломку проф. Квиббла ей так и не удалось. Не могли бы вы помочь Мабель?

    Игры со спичками

    Мабель упустила из виду одно важное обстоятельство: ставя задачу, проф. Квиббл не говорил, что спички должны оставаться на плоскости. Если же выйти из плоскости в трехмерное пространство, то из 12 спичек можно составить 12 ребер куба, у которого, как известно имеется 6 квадратных граней. Мы видим, что ключ к решению спичечной головоломки проф. Квиббла аналогичен идее, позволившей Рози по-новому разрезать головку сыра.

    Более известен другой вариант той же задачи, в котором из 6 спичек требуется составить 4 одинаковых равносторонних треугольника. Решение состоит в том, чтобы из 6 спичек построить каркас правильного тетраэдра.

    А вот еще 6 «спичечных» задач на сообразительность. Удастся ли вам их решить?

    1. Передвинув как можно меньше спичек, составьте квадрат.

    2. Уберите как можно меньше спичек так, чтобы оставшиеся спички образовали 4 равносторонних треугольника таких же размеров, как и 8 треугольников в исходной конфигурации, и нигде не торчали свободные концы.

    3. Передвинув как можно меньше спичек, заставьте рыбку плыть в противоположную сторону.

    4. Передвинув как можно меньше спичек, заставьте поросенка повернуться в противоположную сторону.

    5. Передвинув как можно меньше спичек, извлеките вишенку из бокала. «Пустой» бокал не обязательно должен стоять на ножке: он может лежать на боку. Передвигать вишенку запрещается.

    6. Передвинув как можно меньше спичек, извлеките оливу из бокала для коктейля. Как и в предыдущей задаче, пустой бокал не обязательно должен стоять. Передвигать оливу запрещается.

    Поместив решения этих забавных головоломок, мы бы только испортили вам удовольствие. Сообщаем лишь, что первую задачу можно решить, передвинув 1 спичку, вторую — убрав 4 спички, третью, четвертую и пятую — передвинув соответственно 3, 2 и 2 спички, шестую — не передвинув ни одной спички.

    Хитроумные разбиения

    Рэнсом — землемер, который специализируется в разбиении участков самой причудливой формы на конгруэнтные части.

    Однажды его попросили разделить вот такой участок на 4 одинаковые части. Как это сделать?

    Разделить участок можно единственным способом — так, как показано на рисунке.

    В следующий раз Рэнсому понадобилось разделить на 4 конгруэнтные части участок, имевший форму равнобочной трапеции. Сделать это было нелегко.

    Однако Рэнсом не отступил перед трудностями и сумел найти единственное решение.

    Разделить на 4 конгруэнтные части квадратный участок для такого специалиста, как Рэнсом, было сущей забавой, но когда его попросили разделить квадратный участок на 5 конгруэнтных частей, он стал в тупик.

    Рэнсом. Как же это сделать? Ведь должно же существовать какое-то решение… Есть идея! Все ясно!

    Не могли бы вы сказать, как Рэнсом решил разделить квадратный участок?

    Рэнсом. Мой метод до смешного прост и позволяет делить квадрат на любое число конгруэнтных частей.

    Задачи на разрезание

    Если хотите позабавиться, предложите своим друзьям решить три задачи Рэнсома. В двух первых задачах участки в форме угла и равносторонней трапеции удается разбить на 4 одинаковые части — уменьшенные копии исходного участка. Эти решения косвенно наводят на мысль о том, что и квадрат должен быть разбит на 5 частей довольно причудливой формы, так как его нельзя разделить на 5 квадратов.

    Предложенное Рэнсомом простое решение приходит в голову очень немногим. Можно доказать, что квадрат можно разделить на 5 конгруэнтных частей только так, как это сделал Рэнсом, и никак иначе.

    Если ваш приятель «попадется» на третьей задаче, вам удастся поймать его вторично, задав ему четвертую задачу, тесно связанную с предыдущей. Прежде всего покажите ему, как поле, изображенное на рис. 11, можно разделить на 4 конгруэнтные части, и спросите, можно ли это поле разделить на 3 конгруэнтные части?

    После нескольких попыток ваш друг скорее всего признает себя побежденным и преисполнится уверенности, что ему досталась необычайно трудная задача. Каково же будет его удивление, когда он узнает, что эта задача допускает неожиданно простое решение, аналогичное предложенному Рэнсомом разбиению квадрата на 5 конгруэнтных частей. Это решение приведено на рис. 12. Как и в случае квадрата, метод позволяет производить разбиение поля на любое число конгруэнтных частей.

    Задачи, которые приходится решать землемеру Рэнсому и ресторатору Джо, относятся к одному из увлекательнейших разделов занимательной математики, называемому иногда теорией разбиений. Их неожиданные решения могут подсказать, как следует браться за многие практические задачи геометрии на плоскости и в пространстве. Две первые задачи Рэнсома представляют особый интерес, поскольку в каждой из них участок делится на меньшие участки, повторяющие по форме исходный- Фигуры, которые можно без просветов и наложений, как плитками, вымостить уменьшенными их копиями (репликами), принято называть реп-плитками.

    На рис. 13 показано еще несколько реп-плиток. Можете ли вы разрезать каждую из них на несколько конгруэнтных частей, повторяющих по форме исходную фигуру? Располагай мы неограниченным запасом реп-плиток любой формы, из них можно было бы построить непериодическое разбиение плоскости. Например, рассмотрим Г-образную фигуру, «реп-плиточность» которой доказал, решив первую задачу, Рэнсом. Сложенные вместе, четыре такие фигуры образуют новую Г-образную фигуру, которая в 4 раза больше исходной. Из четырех новых фигур в свою очередь можно составить еще большую Г-образную фигуру. Этот процесс можно продолжать сколь угодно долго и выложить Г-образными фигурами все возрастающих размеров бесконечную плоскость. Неограниченно долго можно продолжать не только составление все более крупных Г-образных реп-плиток, но и разрезание их на все более мелкие фигуры.

    О реп-плитках мы знаем немного. Все известные pen-плитки помимо непериодического разбиения плоскости порождают еще и периодическое разбиение плоскости, то есть позволяют выложить ими всю плоскость так, что, подвергая фундаментальную область узора только параллельным переносам без поворотов и отражений, ею можно покрыть всю плоскость. Существует ли реп-плитка, порождающая только непериодическое разбиение плоскости? Этот трудный вопрос теории разбиений остается пока без ответа.

    Еще меньше известно об объемных реп-плитках. К числу их заведомо принадлежит куб, так как из 8 кубов можно составить 1 куб большего размера так же, как из 4 квадратов можно сложить 1 квадрат побольше. Можете ли вы назвать еще какие-нибудь объемные реп-плитки?

    Если конгруэнтные части по форме не должны повторять составленную из них фигуру, то возможности для придумывания задач-головоломок расширяются. Например, Т-образная фигура на рис. 14 составлена из 5 квадратов. Ее невозможно разрезать на четыре Т-образные фигуры, но, может быть, вам удастся разбить ее на 4 конгруэнтные фигуры какой-нибудь другой формы?

    Разрезание плоскости фигуры даже на две конгруэнтные части может оказаться трудной задачей. На рис. 15 вы видите несколько фигур, на которых можете испытать силу своего геометрического воображения. Решения (способы разрезания) приведены в конце книги.

    Еще один интересный класс задач на разрезание образуют задачи на разрезание одного заданного многоугольника на наименьшее число частей любой формы, из которых можно составить другой заданный многоугольник. Например, на сколько частей достаточно разрезать квадрат, чтобы из них можно было составить равносторонний треугольник? (На 4 части.) Наиболее полно теория разбиений и весь круг вопросов, связанных с разрезанием, изложен в книге Гарри Линдгрена «Занимательные задачи на разрезание»[4].

    Мисс Евклид и ее кубики

    Мисс Евклид поставила на кафедру большой деревянный куб.

    Мисс Евклид. Сегодня я проведу с вами контрольную. Я задам вам всего 3 вопроса об этом кубе.

    Мисс Евклид. Этот куб можно распилить на 64 единичных куба. Для этого требуется провести 9 разрезов.

    Мисс Евклид. Если бы перед каждым разрезом части куба разрешалось бы перекладывать, то можно было бы ограничиться 6 разрезами. Мой первый вопрос к вам: как доказать, что число разрезов не может быть меньше 6?

    Пока класс трудился над ответом на первый вопрос, мисс Евклид провела на двух гранях куба диагонали, проходящие через общую вершину.

    Мисс Евклид. Мой следующий вопрос: чему равен угол между этими двумя диагоналями?

    Прежде чем задать свой третий вопрос, мисс Евклид положила на верхнюю грань куба линейку.

    Мисс Евклид. Как с помощью этой линейки проще всего измерять длину диагонали куба АВ?

    На сколько вопросов мисс Евклид вы смогли бы ответить? Я смог ответить на 2 из 3 вопросов.

    Каверзные задачи

    Решение задачи 1. Докажем, что куб 4?4?4 невозможно разрезать на 64 кубика менее чем 6 плоскими разрезами (при условии, что после каждого разреза части куба разрешается перекладывать). Рассмотрим для этого любой из 8 внутренних кубиков. Ни один из внутренних кубиков не имеет «готовых» граней, которые бы совпадали с гранями большого куба. Следовательно, каждую из 6 граней внутреннего куба необходимо выделить, для чего требуется провести 1 плоский разрез. Поскольку ни одна плоскость не может выделить более одной грани куба, то число разрезов, которые необходимо провести, чтобы высечь все 6 граней куба, должно быть не меньше 6.

    Существует ли общий метод, позволяющий распилить любой прямоугольный параллелепипед с целочисленными длинами ребер на единичные кубы при минимальном числе разрезов (части параллелепипеда разрешается переставлять)? Да, такой метод существует и заключается в следующем. Рассмотрим 3 разных куба, длины ребер которых равны длине, ширине и высоте параллелепипеда. Для каждого куба определим минимальное число разрезов, которые необходимо провести, чтобы разделить его на слои единичной толщины. Для этого проведем плоский разрез перпендикулярно ребру куба через целую точку, расположенную как можно ближе к середине ребра (если в длине ребра укладывается четное число единиц, то распил делит ребро пополам; если же в длине ребра укладывается нечетное число единиц, то распил проходит на расстоянии половины единицы длины от середины ребра), переложим полученные части и будем повторять всю процедуру до тех пор, пока весь куб не распадется на слои единичной толщины. Сумма трех минимумов (по одному для каждого ребра) даст нам ответ задачи.

    Например, чтобы распилить на единичные кубики прямоугольный параллелепипед 3?4?5, необходимо провести 7 плоских разрезов: 2 для ребра 3, 2 для ребра 4 и 3 для ребра 5. Доказательство этого алгоритма было впервые опубликовано в журнале Mathematics Magazine в 1952 г.

    Решение задачи 2. Задача решается просто, если сообразить, что на еще одной грани куба можно провести третью диагональ, соединяющую концы диагоналей, проведенных мисс Евклид (рис. 16).

    Три диагонали образуют равносторонний треугольник. Так как каждый из углов равностороннего треугольника равен 60°, то и угол между проведенными мисс Евклид диагоналями равен 60°.

    Вторая задача мисс Евклид допускает изящное обобщение. Предположим, что мисс Евклид провела на поверхности куба две прямые, соединяющие середины AB и C трех ребер (рис. 17). Чему равен угол ABC между этими прямыми?

    Решение задачи находим по аналогии с предыдущим решением. Прежде всего соединим отрезками прямых середины ребер на четырех остальных гранях так, чтобы все шесть отрезков образовали замкнутую ломаную. Ясно, что все шесть отрезков имеют одинаковую длину и углы между любыми двумя смежными отрезками также одинаковы. Следовательно, если бы нам удалось доказать, что все шесть вершин ломаной лежат в одной плоскости, то мы могли бы утверждать, что наша шестизвенная замкнутая ломаная имеет форму правильного шестиугольника. Доказать нужное нам утверждение нетрудно, но в его справедливости вы можете убедиться экспериментально, распилив деревянный куб на две половинки вдоль плоскости, проходящей через середины шести ребер.

    То, что поперечное сечение, делящее куб на две половины, может иметь форму правильного шестиугольника, неожиданно и в какой-то мере противоречит интуиции. Ну, а коль скоро мы знаем, что две проведенные мисс Евклид линии являются двумя смежными сторонами правильного шестиугольника, то найти угол между ними не составляет никакого труда: он равен 120°.

    Рис. 17 наводит на мысль о еще одной интересной задаче. Предположим, что муха хочет проползти по поверхности куба из точки A в точку C. Можно ли считать путь, образованный отрезками AB и BC, кратчайшим?

    Эту задачу легко и просто решит тот, кто догадается, что кратчайший путь из точки A в точку B на поверхности куба можно найти, если две смежные грани куба развернуть так, чтобы их плоскости совпали: кратчайшим будет отрезок прямой, соединяющий на развертке точки A и C. Развернуть две смежные грани куба так, чтобы плоскости их совпали, можно двумя способами, выбрав либо переднюю и верхнюю грань, либо переднюю и правую грань, поэтому при решении задачи необходимо соблюдать осторожность. В первом случае мы получаем путь длиной v2, во втором — путь длиной v2,5.Следовательно, на рис. 17 изображен кратчайший путь на поверхности куба из A в C.

    Решение задачи 3. Разумеется, длину диагонали куба можно определить, измерив линейкой длину ребра и дважды применив теорему Пифагора. Но диагональ куба можно измерить линейкой гораздо более простым способом. Поставив куб на край стола, отмерим отрезок, равный по длине ребру куба, и концы отрезка пометим, после чего сдвинем куб на длину ребра вдоль края стола (рис. 18). Расстояние от A до B в точности равно диагонали куба, и его можно измерить линейкой.

    Как вы стали бы измерять радиус большого шара, если бы у вас под рукой была только линейка, длина которой составляет ? от диаметра шара? Один из простых способов состоит в том, чтобы запачкать шар сажей или губной помадой и прижать его к стене так, чтобы на стене в точке касания осталась отметка. Измерив линейкой расстояние от пола до отметки, вы определите радиус шара. Можете ли вы предложить аналогичные методы, позволяющие при помощи какого-нибудь ухищрения измерить высоту конуса или пирамиды? Можете ли вы точно измерить радиус цилиндрической трубы, если под рукой у вас имеется только плотницкий угольник?

    По ковровой дорожке

    Ковровое покрытие для кольцевого коридора в здании нового аэропорта было поручено изготовить компании, возглавляемой мистером Тэком.

    Увидев план коридора, мистер Тэк решил, что над ним подшутила, я разгневался: единственным размером, указанным на чертеже, была длина хорды, касательной к внутренней стене коридора.

    Мистер Тэк. Уберите чертеж, чтобы я его больше не видел! Как, скажите на милость, я смогу представить смету на ковровое покрытие, если мне не известна площадь коридора? Посоветуюсь-ка я с моим дизайнером мистером Шарпом.

    Мистер Шарп, искусный геометр, выслушал мистера Тэка спокойно.

    Мистер Шарп. Длина этой хорды, мистер Тэк, — единственный размер, который мне нужен. Я подставлю его в известную мне формулу и узнаю площадь коридора.

    Мистер Тэк с минуту удивленно смотрел на мистера Шарпа, а потом улыбнулся.

    Мистер Тэк. Благодарю вас, мистер Шарп, я могу назвать вам площадь коридора и без этого.

    Знаете ли вы, как мистер Тэк сумел определить площадь кольцевого коридора?

    Удивительная теорема

    Мистер Тэк рассуждал следующим образом. Мистер Шарп пользуется заслуженной репутацией искусного и сведущего геометра, поэтому, если он говорит, что у него есть формула, позволяющая вычислять площадь кольца по длине хорды, касательной к внутренней окружности, то она у него действительно есть. Если длина хорды, касательной к внутренней окружности, будет оставаться равной 100 м, то, как бы ни изменялись радиусы внешней и внутренней окружностей, по формуле мистера Шарпа площадь кольца должна оставаться неизменной.

    Далее мистер Тэк спросил себя, что произойдет, если радиус внутреннего кольца уменьшится до нуля — своего минимального значения. Кольцо в этом случае превратится в круг, а хорда длиной 100 м станет диаметром круга. Площадь круга равна ?·50? кв. м ? 7854 км. м. Следовательно, если предположить, что формула мистера Шарпа существует, то площадь кольца также должна быть равна 7854 кв. м.

    В общем случае кольцо имеет такую же площадь, как круг с диаметром, равным длине наибольшего отрезка прямой, который только умещается в кольце. Эту удивительную теорему нетрудно доказать, если воспользоваться формулой для площади круга.

    Трехмерный аналог этой задачи звучит так: найти объем отрезка толстостенной цилиндрической трубы, если помимо его длины известна длина самого длинного отрезка, который только умещается на одном из торцов трубы (рис. 19). Этот отрезок соответствует касательной в двумерной задаче, и, зная его длину, мы без труда находим площадь поперечного сечения трубы. Умножив площадь сечения на длину отрезка трубы, найдем его объем.

    Менее очевидным трехмерным аналогом задачи о площади кольца является следующая красивая задача. Через центр шара просверлено сквозное цилиндрическое отверстие. Длина канала 6 см. Чему равен объем оставшейся части сферы? И в этом случае кажется, что ответить на вопрос задачи, невозможно: слишком скудны сведения, которыми мы располагаем. Однако исходя из совершенно элементарных соображений, можно показать, что оставшаяся часть сферы имеет такой же объем, как сплошная сфера, диаметр которой равен длине просверленного канала.

    Как и в предыдущем случае, ответ задачи мы получаем сразу же, как только предположим, что задача разрешима! Действительно, если решение задачи существует, то объем части сферы, оставшейся после просверливания сквозного отверстия, не должен зависеть от диаметра отверстия. Устремим поэтому диаметр отверстия к наименьшему значению — нулю. Отверстие при этом сжимается в прямую — диаметр сплошной сферы. Следовательно, объем оставшейся части сферы равен 4/3·?·3? куб. см = 36? куб. см.

    Торт для именинницы

    Обед шел к концу. Мистер Джонс сидел за столом вместе с женой, десятилетним сыном и семилетней дочерью Сьюзен.

    Был день рождения Сьюзен, и миссис Джонс испекла небольшой квадратный торт 20 см ? 20 см и толщиной 5 см, обильно покрытый глазурью сверху и с четырех сторон.

    Мистер Джонс. Замечательный торт! Всем хватит. Первый кусок торта я отрежу для Сьюзен. Ей сегодня исполнилось 7 лет, и я отступлю на 7 см от углов и проведу разрезы через центр.

    Кусок получился причудливой формы, и Сьюзен, которой он достался, пожаловалась.

    Сьюзен. Папа, ты отрезал мне маленький кусочек, меньше четверти! Даже если ты отрезал мне четверть торта, то глазури на ней маловато!

    Брат Сьюзен придерживался другого мнения.

    Брат. Какая ты жадина, Сьюзен! Мне кажется, что папа отрезал тебе слишком много. Не мешало бы тебе кое с кем поделиться излишками.

    Мистер Джонс. Вы оба заблуждаетесь. Сьюзен получила ровно четверть торта и ровно четверть глазури.

    Не могли бы вы объяснить, прав ли мистер Джонс?

    Чтобы убедиться в правоте мистера Джонса, достаточно продолжить линии разрезов за центр до пересечения с противоположными сторонами торта. Продлив каждый разрез, вы тотчас же убедитесь, что они делят торт на четыре конгруэнтные части.

    Как разрезать праздничный пирог?

    Задача о разрезании пирога легко обобщается с квадрата на другие правильные многоугольники.

    Предположим, например, что торт или праздничный пирог испечены в форме равностороннего треугольника и разрезы проведены под углом 120° из центра (рис. 20). Ясно, что каждый кусок составляет треть пирога. В этом нетрудно убедиться, если провести штриховую линию. Если пирог испечен в форме правильного пятиугольника, то, проведя из центра два разреза под углом 72°, мы отрежем от пирога одну пятую. Если пирог имеет форму правильного шестиугольника, то, чтобы отрезать от него одну шестую, необходимо провести из центра два разреза под углом 360° : 6 = 60°. Тот же метод обобщается и на правильные многоугольники с большим числом сторон, хотя угол между разрезами не всегда выражается целым числом градусов.

    Разрезание квадрата на 4 конгруэнтные части другой формы долгое время было одной из излюбленных задач на разрезание. Если, разрезав картонный квадрат на 4 части так, как показано на рис. 21, вы предложите кому-нибудь из своих знакомых составить квадрат из четвертушек, то, как правило, ваш приятель сочтет задачу трудной. После того как он успешно справится с ней, попросите его составить из тех же четвертушек два квадрата.

    Последняя задача в отличие от предыдущих носит несколько жульнический характер: решить ее ваш приятель сможет лишь в том случае, если догадается, что одним из двух квадратов служит отверстие в середине другого квадрата (рис. 22). Размеры отверстия зависят от угла, который линия разреза составляет со стороной исходного квадрата. Если этот угол равен 90°, то отверстие исчезает. Если угол равен 45°, то отверстие достигает наибольших размеров.


    Примечания:



    3

    Гарднер М. Этот правый, левый мир. — М.: Мир, 1967.



    4

    Линдгрен Г. Занимательные задачи на разрезание. — М.: Мир, 1977.







     


    Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх