• 1. Плазма крови, ее состав
  • 2. Физиология эритроцитов
  • 3. Виды гемоглобина и его значение
  • 4. Физиология лейкоцитов
  • 5. Физиология тромбоцитов
  • ЛЕКЦИЯ № 16. Физиология компонентов крови

    1. Плазма крови, ее состав

    Плазма составляет жидкую часть крови и является водно-солевым раствором белков. Состоит на 90–95 % из воды и на 8—10 % из сухого остатка. В состав сухого остатка входят неорганические и органические вещества. К органическим относятся белки, азотосодержащие вещества небелковой природы, безазотистые органические компоненты, ферменты.

    Белки составляют 7–8 % от сухого остатка (что составляет 67–75 г/л) и выполняют ряд функций. Они отличаются по строению, молекулярной массе, содержанию различных веществ. При увеличении концентрации белков возникает гиперпротеинемия, при уменьшении – гипопротеинемия, при появлении патологических белков – парапротеинемия, при изменении их соотношения – диспротеинемия. В норме в плазме присутствуют альбумины и глобулины. Их соотношение определяется белковым коэффициентом, который равняется 1,5–2,0.

    Альбумины – мелкодисперсные белки, молекулярная масса которых 70 000—80 000 Д. В плазме их содержится около 50–60 %, что составляет 37–41 г/л. В организме они выполняются следующие функции:

    1) являются депо аминокислот;

    2) обеспечивают суспензионное свойство крови, поскольку являются гидрофильными белками и удерживают воду;

    3) участвуют в поддержании коллоидных свойств за счет способности удерживать воду в кровеносном русле;

    4) транспортируют гормоны, неэтерефицированные жирные кислоты, неорганические вещества и т. д.

    При недостатке альбуминов возникает отек тканей (вплоть до гибели организма).

    Глобулины – крупнодисперсные молекулы, молекулярная масса которых более 100 000 Д. Их концентрация колеблется в пределах 30–35 %, что составляет около 30–34 г/л. При электрофорезе глобулины распадаются на несколько видов:

    1) ?1– глобулины;

    2) ?2-глобулины;

    3) ?-глобулины;

    4) ?-глобулины.

    За счет такого строения глобулины выполняют различные функции:

    1) защитную;

    2) транспортную;

    3) патологическую.

    Защитная функция связана с наличием иммуноглобулинов – антител, способных связывать антигены. Также они входят в состав защитных систем организма, такие как – системы пропердина и комплемента, обеспечивая неспецифическую резистентность организма. Участвуют в процессах свертывания крови за счет наличия фибриногена, занимающего промежуточное положение между ?-глобулинами и ?-глобулинами, являющимися источником фибриновых нитей. Образуют в организме систему фибринолиза, основным компонентом которой является плазминоген.

    Транспортная функция связана с переносом металлов с помощью гаптоглобина и церулоплазмина. Гаптоглобин относится к ?2-глобулинам и образует комплекс с трансферрином, сохраняющим для организма железо. Церулоплазмин является ?2-глобулином, который способен соединять медь.

    Патологические глобулины образуются в ходе воспалительных реакций, поэтому в норме не обнаруживаются. К ним относятся интерферон (образуется при внедрении вирусов), С-реактивный белок, или белок острой фазы (является ?-глобулином и присутствует в плазме при тяжелых, хронических заболеваниях).

    Таким образом, белки обеспечивают физико-химические свойства крови и выполняют защитную функцию.

    В плазме также содержатся аминокислоты, мочевина, мочевая кислота, креатинин;

    Их содержание невелико, поэтому они обозначаются как остаточный азот крови. В норме он составляет примерно 14,3—28,6 %. Уровень остаточного азота поддерживается за счет наличия белков в пище, выделительной функции почек и интенсивности белкового обмена.

    Органические вещества в плазме представлены в виде продуктов обмена углеводов и липидов. Компоненты обмена углеводов:

    1) глюкоза, содержание которой в норме составляет 4,44– 6,66 ммоль/л в артериальной крови и 3,33—5,55 ммоль/л в венозной и зависит от количества углеводов в пище, состояния эндокринной системы;

    2) молочная кислота, содержание которой резко повышается при критических состояниях. В норме ее содержание равно 1–1,1 ммоль/л;

    3) пировиноградная кислота (образуется при утилизации углеводов, в норме содержится приблизительно 80–85 ммоль/л). Продуктом липидного метаболизма является холестерин, участвующий в синтезе гормонов, желчных кислот, построении клеточной мембраны, выполняющий энергетическую функцию. В свободном виде он представлен в форме липопротеидов – комплекса белков и липидов. Выделяют пять групп:

    1) хиломикроны (участвуют в транспорте триацилглицеридов экзогенного происхождения, образуются в эндоплазматической сети энтероцитов);

    2) липопротеиды очень низкой плотности (переносят триацилглицериды эндогенного происхождения);

    3) липопротеиды низкой плотности (доставляют холестерин к клеткам и тканям);

    4) липопротеиды высокой плотности (образуют комплексы с холестерином и фосфолипидами).

    Биологически активные вещества и ферменты относятся к группе веществ, обладающих высокой энзимной активностью, на их долю приходится 0,1 % сухого остатка.

    Неорганические вещества являются электролитами, т. е. анионами и катионами. Они выполняют ряд функций:

    1) регулируют осмотическое давление;

    2) поддерживают pH крови;

    3) участвуют в возбуждении клеточной мембраны.

    У каждого элемента имеются свои функции:

    1) йод необходим для синтеза гормонов щитовидной железы;

    2) железо входит в состав гемоглобина;

    3) медь катализирует эритропоэз.

    Осмотическое давление крови обеспечивается за счет концентрации в крови осмотически активных веществ, т. е. это разность давлений между электролитами и неэлектролитами.

    Осмотическое давление относится к жестким константам, его величина 7,3–8,1 атм. Электролиты создают до 90–96 % всей величины осмотического давления, из них 60 % – хлорид натрия, так как электролиты имеют низкую молекулярную массу и создают высокую молекулярную концентрацию. Неэлектролиты составляют 4—10 % величины осмотического давления и обладают высокой молекулярной массой, поэтому создают низкую осмотическую концентрацию. К ним относятся глюкоза, липиды, белки плазмы крови. Осмотическое давление, создаваемое белками, называется онкотическим. С его помощью форменные элементы поддерживаются во взвешенном состоянии в кровеносном русле. Для поддержания нормальной жизнедеятельности необходимо, чтобы величина осмотического давления всегда была в пределах допустимой нормы.

    2. Физиология эритроцитов

    Эритроциты – красные кровяные тельца, содержащие дыхательный пигмент – гемоглобин. Эти безъядерные клетки образуются в красном костном мозге, а разрушаются в селезенке. В зависимости от размеров делятся на нормоциты, микроциты и макроциты. Примерно 85 % всех клеток имеет форму двояковогнутого диска или линзы с диаметром 7,2–7,5 мкм. Такая структура обусловлена наличием в цитоскелете белка спектрина и оптимальным соотношением холестерина и лецитина. Благодаря данной форме эритроцит способен переносить дыхательные газы – кислород и углекислый газ.

    Важнейшими функциями эритроцита являются:

    1) дыхательная;

    2) питательная;

    3) ферментативная;

    4) защитная;

    5) буферная.

    Гемоглобин участвует в иммунологических реакциях.

    Дыхательная функция связана с наличием гемоглобина и бикарбоната калия, за счет которых осуществляется перенос дыхательных газов.

    Питательная функция связана со способностью мембраны клеток адсорбировать аминокислоты и липиды, которые с током крови транспортируются от кишечника к тканям.

    Ферментативная функция обусловлена присутствием на мембране карбоангидразы, метгемоглобинредуктазы, глютатионредуктазы, пероксидазы, истинной холинэстеразы и др.

    Защитная функция осуществляется в результате оседания токсинов микробов и антител, а также за счет присутствия факторов свертывания крови и фибринолиза.

    Поскольку эритроциты содержат антигены, то их используют в иммунологических реакциях для выявления антител в крови.

    Эритроциты являются самыми многочисленными форменными элементами крови. Так, у мужчин в норме содержится 4,5–5,5 ? 1012/л, а у женщин – 3,7–4,7 ? 1012/л. Однако количество форменных элементов крови изменчиво (их увеличение называется эритроцитозом, а при уменьшение – эритропенией).

    Эритроциты обладают физиологическими и физико-химическими свойствами:

    1) пластичностью;

    2) осмотической стойкостью;

    3) наличием креаторных связей;

    4) способностью к оседанию;

    5) агрегацией;

    6) деструкцией.

    Пластичность во многом обусловлена строением цитоскелета, в котором очень важным является соотношение фосфолипидов и холестерина. Это соотношение выражается в виде липолитического коэффициента и в норме составляет 0,9. Пластичность эритроцитов – способность к обратимой деформации при прохождении через узкие капилляры и микропоры. При снижении количества холестерина в мембране наблюдается снижение стойкости эритроцитов.

    Осмотическое давление в клетках немного выше, чем в плазме, за счет внутриклеточной концентрации белков. Также на осмотическое давление оказывает влияние и минеральный состав (в эритроцитах преобладает калий и снижено содержание ионов Na). За счет наличия осмотического давления обеспечивается нормальный тургор.

    В настоящее время установлено, что эритроциты являются идеальным переносчиками, поскольку обладают креаторными связями, транспортируют различные вещества и осуществляют межклеточное взаимодействие.

    Способность к оседанию обусловлена удельным весом клеток, который выше, чем все плазмы крови. В норме она невысока и связана с наличием белков альбуминовой фракции, которые способны удерживать гидратную оболочку эритроцитов. Глобулины являются лиофобными коллоидами, которые препятствуют образованию гидратной оболочки. Соотношение альбуминовой и глобулиновой фракций крови (белковый коэффициент) определяет скорость оседания эритроцитов. В норме он составляет 1,5–1,7.

    При уменьшении скорости кровотока и увеличении вязкости наблюдается агрегация. При быстрой агрегации образуются «монетные столбики» – ложные агрегаты, которые распадаются на полноценные клетки с сохраненной мембраной и внутриклеточной структурой. При длительном нарушении кровотока появляются истинные агреганты, вызывающие образование микротромба.

    Деструкция (разрушение эритроцитов) происходит через 120 дней в результате физиологического старения. Оно характеризуется:

    1) постепенным уменьшением содержания липидов и воды в мембране;

    2) увеличенным выходом ионов K и Na;

    3) преобладанием метаболических сдвигов;

    4) ухудшением способности к восстановлению метгемоглобина в гемоглобин;

    5) понижением осмотической стойкости, приводящей к гемолизу.

    Стареющие эритроциты за счет понижения способности к деформации застревают в миллипоровых фильтрах селезенки, где поглощаются фагоцитами. Около 10 % клеток подвергаются разрушению в сосудистом русле.

    3. Виды гемоглобина и его значение

    Гемоглобин относится к числу важнейших дыхательных белков, принимающих участие в переносе кислорода от легких к тканям. Он является основным компонентом эритроцитов крови, в каждом из них содержится примерно 280 млн молекул гемоглобина.

    Гемоглобин является сложным белком, который относится к классу хромопротеинов и состоит из двух компонентов:

    1) железосодержащего гема – 4 %;

    2) белка глобина – 96 %.

    Гем является комплексным соединением порфирина с железом. Это соединение довольно неустойчивое и легко превращается либо в гематин, либо в гемин. Строение гема идентично для гемоглобина всех видов животных. Отличия связаны со свойствами белкового компонента, который представлен двумя парами полипептидных цепей. Различают HbA, HbF, HbP формы гемоглобина.

    В крови взрослого человека содержится до 95–98 % гемоглобина HbA. Его молекула включает в себя 2 ?– и 2 ?-полипептидные цепи. Фетальный гемоглобин в норме встречается только у новорожденных. Кроме нормальных типов гемоглобина, существуют и аномальные, которые вырабатываются под влиянием генных мутаций на уровне структурных и регуляторных генов.

    Внутри эритроцита молекулы гемоглобина распространяются по-разному. Вблизи мембраны они лежат к ней перпендикулярно, что улучшает взаимодействие гемоглобина с кислородом. В центре клетки они лежат более хаотично. У мужчин в норме содержание гемоглобина примерно 130–160 г/л, а у женщин – 120–140 г/л.

    Выделяют четыре формы гемоглобина:

    1) оксигемоглобин;

    2) метгемоглобин;

    3) карбоксигемоглобин;

    4) миоглобин.

    Оксигемоглобин содержит двухвалентное железо и способен связывать кислород. Он переносит газ к тканям и органам. При воздействии окислителей (перекисей, нитритов и т. д.) происходит переход железа из двухвалентного в трехвалентное состояние, за счет чего образуется метгемоглобин, который не вступает в обратимую реакцию с кислородом и обеспечивает его транспорт. Карбоксигемоглобин образует соединение с угарным газом. Он обладает высоким сродством с окисью углерода, поэтому комплекс распадается медленно. Это обусловливает высокую ядовитость угарного газа. Миоглобин по структуре близок к гемоглобину и находится в мышцах, особенно в сердечной. Он связывает кислород, образуя депо, которое используется организмом при снижении кислородной емкости крови. За счет миоглобина происходит обеспечение кислородом работающих мышц.

    Гемоглобин выполняет дыхательную и буферную функции. 1 моль гемоглобина способен связать 4 моля кислорода, а 1 г – 1,345 мл газа. Кислородная емкость крови – максимальное количество кислорода, которое может находиться в 100 мл крови. При выполнении дыхательной функции молекула гемоглобина изменяется в размерах. Соотношение между гемоглобином и оксигемоглобином зависит от степени парциального давления в крови. Буферная функция связана с регуляцией pH крови.

    4. Физиология лейкоцитов

    Лейкоциты – ядросодержащие клетки крови, размеры которых от 4 до 20 мкм. Продолжительность их жизни сильно варьируется и составляет от 4–5 до 20 дней для гранулоцитов и до 100 дней для лимфоцитов. Количество лейкоцитов в норме у мужчин и женщин одинаково и составляет 4–9 ? 109/л. Однако уровень клеток в крови непостоянен и подвержен суточными и сезонным колебаниям в соответствии с изменением интенсивности обменных процессов.

    Лейкоциты делятся на две группы: гранулоциты (зернистые) и агранулоциты.

    Среди гранулоцитов в периферической крови встречаются:

    1) нейтрофилы – 46–76 %;

    2) эозинофилы – 1–5 %;

    3) базофилы – 0–1 %.

    В группе незернистых клеток выделяют:

    1) моноциты – 2—10 %;

    2) лимфоциты – 18–40 %.

    Процентное содержание лейкоцитов в периферической крови называется лейкоцитарной формулой, сдвиги которой в разные стороны свидетельствуют о патологических процессах, протекающих в организме. Различают сдвиг вправо – понижение функции красного костного мозга, сопровождающееся увеличением количества старых форм нейтрофильных лейкоцитов. Сдвиг влево является следствием усиления функций красного костного мозга, в крови увеличивается количество молодых форм лейкоцитов. В норме соотношение между молодыми и старыми формами лейкоцитов составляет 0,065 и называется индексом регенерации. За счет наличия ряда физиологических особенностей лейкоциты способны выполнять множество функций. Важнейшими из свойств являются амебовидная подвижность, миграция (способность проникать через стенку неповрежденных сосудов), фагоцитоз.

    Лейкоциты выполняют в организме защитную, деструктивную, регенеративную, ферментативную функции.

    Защитное свойство связано с бактерицидным и антитоксическим действием агранулоцитов, участием в процессах свертывания крови и фибринолиза.

    Деструктивное действие заключается в фагоцитозе отмирающих клеток.

    Регенеративная активность способствует заживлению ран.

    Ферментативная роль связана с наличием ряда ферментов.

    Иммунитет – способность организма защищаться от генетически чужеродных веществ и тел. В зависимости от происхождения может быть наследственным и приобретенным. Он основан на выработке антител на действие антигенов. Выделяют клеточное и гуморальное звенья иммунитета. Клеточный иммунитет обеспечивается активностью Т-лимфоцитов, а гуморальный – В-лимфоцитов.

    5. Физиология тромбоцитов

    Тромбоциты – безъядерные клетки крови, диаметром 1,5–3,5 мкм. Они имеют уплощенную форму, и их количество у мужчин и женщин одинаково и составляет 180–320 ? 109/л. Эти клетки образуются в красном костном мозге путем отшнуровывания от мегакариоцитов.

    Тромбоцит содержит две зоны: гранулу (центр, в котором находятся гликоген, факторы свертывания крови и т. д.) и гиаломер (периферическую часть, состоящую из эндоплазматического ретикулума и ионов Ca).

    Мембрана построена из бислоя и богата рецепторами. Рецепторы по функции делятся на специфические и интегрированные. Специфические способны взаимодействовать с различными веществами, за счет чего запускаются механизмы, аналогичные действию гормонов. Интегрированные обеспечивают взаимодействие между тромбоцитами и эндотелиоцитами.

    Для тромбоцитов характерны следующие свойства:

    1) амебовидная подвижность;

    2) быстрая разрушаемость;

    3) способность к фагоцитозу;

    4) способность к адгезии;

    5) способность к агрегации.

    Тромбоциты выполняют трофическую и динамическую функции и осуществляют регуляцию сосудистого тонуса и принимают участие в процессах свертывания крови.

    Трофическая функция заключается в обеспечении сосудистой стенки питательными веществами, за счет которых сосуды становятся более упругими.

    Регуляция сосудистого тонуса достигается благодаря наличию биологического вещества – серотонина, вызывающего сокращения гладкомышечных клеток. Трамбоксан А2 (производный арахидоновой кислоты) обеспечивает наступление сосудосуживающего эффекта за счет снижения сосудистого тонуса.

    Тромбоцит принимает активное участие в процессах свертывания крови за счет содержания в гранулах тромбоцитарных факторов, которые образуются либо в тромбоцитах, либо адсорбируются в плазме крови.

    Динамическая функция заключается в процессах адгезии и агрегации тромбов. Адгезия – процесс пассивный, протекающий без затраты энергии. Тромб начинает прилипать к поверхности сосудов за счет интергиновых рецепторов к коллагену и при повреждении выделяется на поверхность к фибронектину. Агрегация происходит параллельно адгезии и протекает с затратой энергии. Поэтому главным фактором является наличие АДФ. При взаимодействии АДФ с рецепторами начинается активация J-белка на внутренней мембране, что вызывает активацию фосфолипаз А и С. Фосфолипаза а способствует образованию из арахидоновой кислоты тромбоксана А2 (агреганта). Фосфолипаза с способствует образованию иназитолтрифосфата и диацилглецерола. В результате активируется протеинкиназа С, повышается проницаемость для ионов Ca. В результате из эндоплазматического ретикулума они поступают в цитоплазму, где Ca активирует кальмодулин, который активирует кальцийзависимую протеинкиназу.







     


    Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх