• Активация моделей
  • Сравнение моделей и распознавание образов
  • Дописывание «фразы» — вспоминание
  • Обобщение моделей
  • Действия с моделями

    Здесь мы рассмотрим только важнейшие действия с моделями. К ним можно отнести действия активации моделей, их сравнения, а также дописывания «фразы» и обобщения моделей.

    Активация моделей

    В памяти находится масса моделей, составленных из «слов», «фраз», «букв» разных «алфавитов». Модели объединены связями, по которым они взаимодействуют друг с другом. Большинство моделей находится в неактивном состоянии. В частности, это касается всех моделей длительной памяти АИ и в меньшей степени — СИ, в котором нет разделения активной и пассивной (кратковременной и длительной) памяти. Деятельность интеллекта связана с активацией новых моделей в длительной памяти и постепенным затуханием активности моделей в кратковременной памяти. В мозге и в ИИ на физических сетях каждый элемент модели — нейрон — или целую модель — ансамбль из нейронов — можно представить как генератор специальной («нервной») энергии, возникающей в ответ на действие такой же энергии, которая поступает по связям от других моделей. Генератор работает по статическим и динамическим характеристикам, подобным показанным на рис. 8 и 9. Энергия передается по связям на другие модели; количество ее определяется проходимостью связи.

    Активное состояние модели можно назвать физиологическим термином «возбуждение». В нейронах мозга оно выражается частотой импульсов, в СИ на физических сетях — это электрический потенциал. В ИИ, моделируемом на цифровых машинах, уровень активности моделей — это главный параметр, «буква», выраженная числом, и его нужно пересчитывать для каждого временного такта по статическим и динамическим характеристикам. Впрочем, для АИ это касается только моделей в кратковременной памяти. Операции активирования моделей могут быть двух видов: извлечение модели из длительной памяти с расчетом ее активности или пересчет уровня активности модели, уже находящейся в кратковременной памяти, если она получает дополнительный импульс по связям от другой модели.

    В СИ выбор новой модели для активации определяется структурой связей, идущих от активной модели. В АИ новая модель вызывается из длительной памяти по «адресу», записанному в «словаре фраз», в котором первым «словом» является уже возбужденная модель. Например, есть «словарь» предмет—действие, в нем есть модель «хлеб», ей соответствует модель действия «жевать». Последняя и будет вызвана, если в оперативной (кратковременной) памяти содержится возбужденное «слово» «хлеб». Уровень активности модели «жевать» будет подсчитан, исходя из статической характеристики коэффициента проходимости связи, записанного в «словаре», и активности модели «хлеб».

    В соответствии с нашей гипотезой для функционирования интеллекта необходимо еще другое состояние, противоположное по знаку возбуждению,— так называемое «торможение». Этот термин принят в нейрофизиологии. Мы его представляем как отрицательную активность, которая тоже генерируется специальными центрами и вычитается из положительной активности при расчетах. Впрочем, необходимость в торможении нужно еще уточнять при проектировании ИИ.

    Сравнение моделей и распознавание образов

    Второй тип операции с моделями — это их сравнение между собой с целью установления как общности, так и различия. Реализация действия целиком зависит от вида интеллекта и организации памяти. В мозге сравнение осуществляется, по всей вероятности, путем условного «наложения» моделей друг на друга. При этом их сходство и различие определяются по количеству общих элементов. Из физиологии известно, что очаг возбуждения в коре генерирует торможение на окружающие участки, затем возбуждение первого очага падает, его «соседи» освобождаются от торможения, и возбуждается другой очаг коры. Можно предполагать, что этим следующим очагом, то есть моделью, будет такой очаг, у которого много связей с первым или много общих нейронов в составляющих модели ансамблях. Сходство и различие определяются по отношению к каким-то третьим моделям-признакам, связи к которым идут от первой и второй из сравниваемых моделей. Допустим, что первая возбужденная модель вызвала к активности признак 1, а вторая — активированная по сходству — возбудила признак 2. Степень совпадения признаков — это мера общности и различия моделей. У животных нет количественного выражения для этой меры, у человека, овладевшего счетом, она есть.

    Для АИ сравнение моделей — банальная операция вычитания двух строк цифр. Выраженная цифрами модель разделена на разряды со своими значениями. Можно предположить, что в первом разряде представлена наиболее обобщенная модель (какое-то материальное тело), во втором — крупные структурные блоки (голова, туловище, ноги, отличающие человека), в последующих разрядах — детали. Такой образ всегда имеет место, когда мы воспринимаем объект, даже при фокусировке зрения на его деталях. По этим разрядам и будет осуществляться сравнение.

    Сравнение известной модели с неизвестными лежит в основе распознавания образов. По модели объекта, отпечатанного с рецептора в кратковременной памяти, которая не имеет связей с другими моделями и, следовательно, является неизвестной, нужно найти модель-эталон, имеющую такие связи, иначе говоря, входящую в различные «фразы» и числящуюся в «словарях». Именно связями определяется то, насколько знаком нам тот или иной объект: чем больше связей, тем лучше мы его знаем. Вероятность распознавания определяется точностью совпадений неизвестной модели с эталонами. Множественное число я употребил не случайно: объект может походить на несколько других, известных.

    Распознавание в СИ осуществляется автоматически: ансамбль возбужденных с рецептора элементов, который представляет собой модель неизвестного объекта, накладывается на другую модель. Она активируется, а затем активируются связанные с ней модели, опознающие объект. Поочередно может активироваться несколько похожих моделей, каждая со своей степенью сходства.

    В АИ для распознавания модели нужна специальная программа извлечения из постоянной памяти серии моделей и сравнение каждой из них с моделью объекта. Выборка моделей из памяти должна производиться начиная с самого обобщенного признака — «буквы». По ней выбирается «словарь» и далее сравниваются вторые и следующие «буквы», так же как производится поиск значения «слова» по «словарю». «Известность» наиболее близкого из искомых «слов» определяется числом вхождений его в «словари фраз». Степень вероятности опознания объекта определяется совпадением последних «букв» — деталей, потому что по первым «буквам», определяющим обобщенные признаки, всегда можно найти много похожих. Человека легко отличить от других объектов, труднее распознать — кто есть кто.

    Остановлюсь на двух обстоятельствах, осложняющих распознавание. Первое — «неполнота» модели объекта, обусловленная помехами восприятия, дальностью расстояния или недостаточным напряжением рецептора. Неполнота или неясность первичной модели выражается в отсутствии ряда деталей, в «крупноблочности». При этом всегда присутствует «буква», объясняющая неполноту,— показатель низкой настройки рецептора или наличия внешних помех. Я намеренно не употребил понятие «обобщенность» применительно к такой модели, потому что оно предусматривает выражение модели крупными блоками в результате специального отказа от деталей, а не отсутствия их из-за плохого восприятия. Неполную модель можно распознать, только сравнивая ее с обобщенными моделямиэталонами, чем и определяется полнота распознавания. Например, видно, что объект — человек, но мужчина это или женщина, определить нельзя из-за неясности образа. Более четкую первичную модель можно получить за счет настройки рецепторов или приближения к объекту.


    Рис. 20. Схема гипотетических «рельсов» в «рецепторном поле», позволяющих производить приведение модели к одному определенному размеру. В памяти хранится модель а. При восприятии объекта с близкого расстояния большая модель б уменьшается до размеров а; при восприятии объекта с большого расстояния малые модели в или г увеличиваются до размеров а.


    Второе обстоятельство — это различие в размерах первичной модели и моделей-эталонов. Общеизвестно, что человек может распознать объект с разного расстояния, если он хорошо изучен вблизи. Распознавания прямым наложением моделей здесь не получится. Нужно допустить специальный механизм приведения модели к одному определенному размеру в виде своеобразных «рельсов» в «рецепторном поле», как показано на рис. 20. «Рельсы» эти позволяют изменять размер первичной модели, сохраняя сходство. По всей вероятности, нечто подобное есть в зрительной области коры. Для АИ перекодирование первичной модели цифровым кодом должно предусматривать приведение к стандартному размеру моделей-эталонов.

    Есть еще ряд обстоятельств, затрудняющих распознавание: различия исходных положений объекта, его деформации и др. Многие из возникающих здесь вопросов подробно исследовались кибернетиками, и полученные ими результаты можно применить и для АИ.

    Дописывание «фразы» — вспоминание

    Операцией дописывания «фразы» можно назвать активацию какой-либо одной модели, являющейся следствием активации другой модели. Активация происходит по связи, соединяющей обе эти модели. Такую операцию можно еще обозначить термином «вспоминание». Активация последовательности «слов» во «фразе» осуществляется по принципам, описанным в начале этого раздела. «Фразы» могут быть самыми различными, в них может запечатлеваться любая последовательность воспринятых образов, закрепленная в памяти повторным вспоминанием. В АИ «фразы» записаны в «словарях фраз». Их много: предмет—действие, предмет—качество и др., и наоборот. Важными являются, так сказать, вертикальные «фразы»: «вверх» — от детали к обобщению, «вниз» — как расшифровка обобщенной модели детальными вариантами. Память в АИ должна состоять из коротких «фраз» в 2—4 «слова», а длинные последовательности моделей должны составляться из нескольких «фраз». Это проще, чем создавать «словари» длинных «фраз». Человеческий разум тоже оперирует короткими «фразами» образов. Вызов следующего «слова» «фразы» возможен только в случае достаточной активности первого «слова» и достаточной проходимости связи от него ко второму. Активность рассчитывается по входам на первое «слово» от других моделей (по другому «словарю»), а параметр связи записан в «словаре».

    Обобщение моделей

    Операция выделения обобщенной модели из серии конкретных моделей осуществляется их последовательным сравнением и выделением общего признака сходства между ними (пример — «четвероногие»). При этом все остальные признаки, по которым модели серии отличаются друг от друга, становятся все более неясными, иными словами, в обобщенной модели они выступают с низкой активностью. Такая обобщенная модель, полученная на материале ряда конкретных моделей, имеет «букву обобщения», указывающую название действия, в результате которого модель образовалась. Этой «буквой» она отличается от неясной модели конкретного объекта, при которой стоит «буква восприятия».

    Замена ряда конкретных моделей одной обобщенной является весьма распространенной операцией. Идя по лесу, вы видите множество деревьев. Все они отражаются во временной памяти, и некоторое время спустя еще можно припомнить отдельные деревья. Однако потом конкретные образы заменятся неким обобщенным деревом, усредняющим виденные распространенные экземпляры («лес из высоких сосен»). При этом обобщенная модель сопровождается «буквами» с адресами действий, отрезков пространства или времени. Обычно обобщенная модель имеет структурный ранг на одну степень выше, чем конкретные составляющие. Например, в «обобщенном дереве» ветки и листья не дифференцируются по породам. «Обобщенный человек» выглядит бесполым, поскольку его черты совершенно неясны.

    Обобщение касается всех видов моделей — зрительных и слуховых образов, моделей действий, моделей качеств, иногда самых специфичных. «Ранг обобщения» может быть самым различным, но образное выражение обобщений высокого ранга затруднительно, и они выражаются только с помощью речи. Например, можно представить «обобщенный стул» в виде неясного образа предмета со спинкой, сиденьем и ножками, но как зрительно представить себе «обобщенную мебель». Здесь совершенно разные предметы обобщены по признаку функции или места нахождения. Если потребовать: «Представьте мебель», то выступает ряд неясных предметов мебели и «буква обобщения», указывающая, что есть еще много подобных образов. Только речь позволила обозначить этот уровень обобщения и таким образом дала возможность произвести сами действия.

    Можно ли образно представить «вещь». Или «материальное тело». Можно, в виде неясной структуры, отграниченной от других. Зрительный образ такой структуры имеется как «что-то», но выделить его позволили только слова речи — «вещь», «тело», «существо», «человек», «животное». Можно предполагать, что черты обобщения всегда присутствуют в конкретной модели. Так, например, понятие «материальное тело» присутствует в модели стула, отражая то обстоятельство, что стул — это пространственная структура, отграниченная от среды.

    Для цифрового кодирования образов при создании АИ нужно, вероятно, отразить отдельными цифрами принадлежность данной конкретной вещи к основным уровням структурной иерархии обобщения. Для этого необходимо создать систему обозначений. Разумеется, нельзя в модели представить все возможные параметры, по которым можно обобщить, например, стулья, но следует отметить, что они принадлежат к приспособлениям для сидения, к мебели, к предметам (то есть неживым телам). Это удлинит конкретную модель, но упростит операции с ней. Впрочем, не стоит вдаваться в детали, поскольку возможны разные системы перекодирования образов в цифровые модели.

    На этом я закончу рассмотрение операций с моделями, хотя далеко не исчерпал их варианты. Важно усвоить главные, потому что они постоянно присутствуют в программах интеллекта, и хотелось бы при дальнейшем изложении не касаться деталей операции, а просто обозначать ее.







     


    Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх