|
||||
|
Системы и модели Современный этап развития науки ознаменован достижением принципиальной важности: вычислительные машины дали возможность овладеть сложностью. Все значение этого достижения как раз и состоит в том, что появилась надежда на создание количественных моделей, приближающихся по сложности к биологическим системам. Возможно, что при разработке таких моделей недостаточно внимания уделяется значению пространственных структур объектов, хотя наблюдения природы указывают на их исключительную роль (вспомним двойную спираль молекулы ДНК). Весь физический мир можно свести к пространственным структурам, состоящим из атомов и молекул, а также к действующим между ними силам, связывающим материальные частицы в комплексы, которые условно можно назвать «телами». Общеизвестно, что все объекты в мире взаимосвязаны, однако степень прочности этих связей весьма различна: от жестких связей внутри твердых тел до гравитационных и электромагнитных сил, лишь ограничивающих пространственную свободу частиц. Пространство, энергия и время — вот самые общие координаты частиц и тел. Еще недавно казалось, что энергетические и материальные взаимоотношения между частицами и телами достаточно объясняют мир. Но вот появилось понятие информации и понятие сигнала как носителя информации, и это поколебало представления об исключительно энергетическом и материальном характере балансов отношений между объектами. Сигнал, несущий ничтожное количество энергии, может вызвать огромные вещественные и энергетические пертурбации в сложной системе, на которую он направлен (пример — атомная война). Рис. 5. Схемы простых систем — закрытой и открытой. Между элементами происходит обмен энергией Эн и веществом В. Сложность структурных и энергетических отношений стала самостоятельным и значимым понятием, без учета которого уже невозможно объяснить мир. Понятие системы тоже более или менее определилось: это пространственная структура из неких элементов, объединенных внутренними «силами» настолько прочно, что она выступает как единое целое, противопоставленное всем другим объектам. Системы зависят друг от друга в обмене энергией и веществом, но в меньшей степени, чем элементы внутри них (рис. 5). Хотелось бы дать количественное понятие системы, но очень нелегко установить, когда простое сочетание взаимодействующих элементов уже становится системой. Степень «зрелости» системы условно можно определить по степени зависимости ее элементов друг от друга: сколько времени они могут «самостоятельно прожить», не распадаясь на более простые частицы, если их отделить от системы. В связи с этим понятие элемента системы тоже не просто — в конце концов все объекты разложимы до элементарных частиц. Мне кажется, что элементом системы нужно считать некое более простое образование, уже обладающее чертами данной системы. Если взять живые биологические объекты, то можно перечислить иерархические ступени их сложности: элементарные частицы, атомы, молекулы, макромолекулы (ДНК, белки), клетки, органы, организмы, сообщества, биоценозы... Каждый уровень сам по себе достаточно сложен по структуре, чтобы претендовать на звание «сложности», но все-таки, какие из них допустимо считать сложными, какие отнести к простым, какие признать лишь элементами сложных. Без условности здесь не обойтись. Рис. 6. Схема сложной системы: Рц — рецептор; Эн — энергия; В — вещество. Сложные системы Будем считать сложными такие системы, в которых между элементами циркулируют не только частицы вещества и энергии, но и сигналы (рис. 6). В структуре сложных систем можно условно выделить рабочие подсистемы, ведающие преобразованиями вещества и энергии, и управляющие, которые воздействуют на рабочие с помощью сигналов. Хотя сигнал тоже имеет физическую, то есть вещественную и энергетическую, природу, но дело не в ней, а в характере сигнала, то есть его временной структуре и, особенно, месте приложения к управляемому объекту — в данном случае к рабочей подсистеме. При таких условиях — обязательность наличия управляющих сигналов и рабочих подсистем — грань сложных систем проходит на уровне одноклеточных существ: их управляющим органом является генетический аппарат ДНК, рабочими подсистемами — органеллы клетки (оболочка, митохондрии, лизосомы и др.). Роль сигналов выполняют информационные РНК. Макромолекулы — белки и нуклеиновые кислоты — достаточно сложны по структуре, но не удовлетворяют требованиям, предъявляемым к сложной системе. На более высоких уровнях иерархии систем эти условия соблюдены. Например, в организме органами управления являются нервная и эндокринная системы, сигналами — молекулы гормонов и медиаторов (передатчики нервных импульсов). Сообщество животных не всегда становится сложной системой. Только у высших млекопитающих и птиц есть внутренняя организация в стае и система управляющих сигналов, и только у человека эта система приобретает достаточную «зрелость». В обществе легко обнаружить структуры, аналогичные рабочим и управляющим подсистемам, в нем циркулируют многочисленные и разнообразные сигналы. Иерархия сложных систем представлена на рис. 7. Рис. 7. Иерархия сложных систем. Элементом сложной системы каждого уровня являются системы предыдущего уровня, в которых уже заложены некоторые качества высшей системы. Для организма — это клетки, для общества — люди. Элементом клетки являются макромолекулы. Они способны воспроизводить себя лишь при наличии ферментов, действующих извне. Именно поэтому макромолекулу нельзя считать сложной системой. Скачок от молекулы до клетки очень велик — этим определяются трудности объяснения возникновения жизни на Земле. На других, высших уровнях такие качественные скачки менее выражены. Клетки многоклеточных, будучи отделены от тела, способны еще некоторое время жить, так же как и отбившиеся от стаи животные. А уровень «зрелости» такой системы, как человеческое общество, возрастает буквально на наших глазах. Еще пять — десять поколений тому назад, когда преобладало натуральное хозяйство, большинство людей было способно существовать в условиях весьма ограниченных связей с обществом. Теперь же брошенный в лесу человек может погибнуть через несколько дней. Самое общее качество сложных систем «типа живых» — способность к поддержанию своей целостности и к противодействию разрушающим влияниям окружающей среды. Однако оно не беспредельно, поэтому необходимо другое качество, более сложное в своем структурном выражении,— способность к воспроизведению самих себя. Еще более сложным качеством является способность к усложнению в процессе воспроизведения. В живой природе это выражается изменчивостью. В человеческом обществе усложнение структуры и функции наблюдается постоянно и является следствием феномена творчества и труда, отсутствующих в стае животных. Принцип структурности предполагает, что для реализации всех этих качеств должны быть соответствующие структуры. Нужна структура для постоянного возобновления своих разрушающихся частей и для утилизации с этой целью энергии среды, нужны структуры для размножения и структурное выражение программы их «удвоения» и, наконец, необходимы некоторые структурные возможности для наращивания новых структур, то есть для усложнения. Более того, должны быть структуры, отражающие внешний мир, поскольку на него замыкается реализация программ, которые являются выражением названных «способностей». Программа творчества тоже требует структурного выражения. Модели Существует хороший термин для обозначения структуры, отражающей другую структуру. Этот термин — модель; у каждого из нас есть его интуитивное понимание. Модель отражает объект не полностью, а с упрощениями и искажениями — в зависимости от того, для какой цели она предназначена и какие есть возможности для ее построения. Органы управления сложных систем «типа живых» содержат в себе модели и программы (иными словами, тоже структуры), управляющие рабочими подсистемами в соответствии с этими моделями. Программа — это «считывание» модели сигналами, которые регулируют потоки энергии и вещества между элементами системы. Как объяснить, что сравнительно простая структура — модель в ДНК зародышевой клетки человека — может отразить всю сложность самого человека с его разнообразием клеток и всеми человеческими качествами. Для того чтобы из яйцеклетки вырос человек, нужно извне получить массу сложных веществ («кирпичиков»), а модель должна только предусмотреть, как сложить из них «здание». Само «складывание» состоит в значительной мере в повторении одинаковых операций. В ДНК заложены структуры всех белков организма и порядок, в каком следует «считывать» их при построении органов. Заложены и обратные связи, отмечающие выполнение этапов формирования организма. Следовательно, принцип управления по модели не исключает возможности построения более сложной, чем сама модель, системы, поскольку в модели должен быть предусмотрен лишь порядок включения структур, получаемых извне. Мы привыкли к статическим моделям: игрушка, чертеж, текст — все это чистая структура. Основу моделей в органах управления сложных систем тоже составляют структуры: ДНК, сети нейронов в центральной нервной системе. Несомненна избыточность этих структур — например в каждой клетке имеется полный набор генов, достаточный для построения целого организма. Для реализации управления нужна программа «считывания» структур сигналами, а для этого — активация определенных частей модели. Таким образом, важна не только структура, но и активность, энергия различных элементов модели. Понятие активности тоже можно свести к изменению структур, только на уровне более низком, например в молекулах, атомах, составляющих структуру. Сам сигнал представляет собой такую «активированную порцию структуры». Пример — информационная РНК или активность синапса на теле нервной клетки, когда на него подается импульс с другого нейрона. Структура нам представляется чем-то стабильным, хотя в действительности это относится лишь к грубым материальным конструкциям из многих молекул и атомов. В живых системах структуры ДНК очень прочны, чего нельзя сказать о структурах нервной системы. Конечно, нейроны не передвигаются, отростки их у взрослого растут медленно, но тонкие структуры синапсов — мест соединения нейронов, обеспечивающих прохождение энергии с одного нейрона на другой,— довольно нестабильны во времени. То же касается и «рабочих» элементов нейрона, обеспечивающих его активность — процесс возбуждения. Рис. 8. Динамические характеристики элементов модели (нейронов) : «вход» — время раздражения извне, «выход» — величина активности на выходе элемента. Характеристики отмечают длительность активности после прекращения действия «входа». Рис. 9. Статические характеристики элементов модели (нейронов): «вход» - величина раздражителя; «выход» — уровень активности. Показаны три характеристики — в зависимости от степени тренированности элемента. Активность элементов модели, так же как и сигналы,— это ее функции. Модель, в которой элементы взаимодействуют друг с другом и с внешней средой через сигналы, можно назвать действующей, в противоположность статичной, лишенной функции и возможности самостоятельно взаимодействовать с внешним миром. Структуры живых клеток подчиняются закону тренировки и детренировки: при функционировании их «мощность» возрастает, при покое — уменьшается. Эти процессы развиваются неравномерно. Уровень и длительность активности живого структурного элемента не только заложены в его генах, но и являются результатом тренировки в процессе предшествовавшей деятельности. Изменение структуры модели в результате получения сигналов извне составляет память. Временная активность комплекса структурных элементов модели — это временная или активная память. Организация новых структур в соединениях элементов модели — ее длительная или пассивная память. На рис. 8 показаны временные (динамические) характеристики различных типов элементов, а на рис. 9 — статические характеристики их тренированности. Итак, сочетание постоянных и изменчивых структур, состоящих из элементов с разными динамическими характеристиками активности,— вот черты моделей систем «типа живых». |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх |
||||
|