|
||||
|
Глава 1. Каменоломня Солнечной системыНе бросайте трубку, пожалуйста!…Давным-давно, в 1968 году, в моем кабинете зазвонил телефон. — Скажите, что такое Икар? — спросил взволнованный женский голос. — Икар — это маленькая планета… — Не планета, а комета, — перебили меня. — Ну, если вы считаете себя правой, зачем же звоните сюда?.. — Нет-нет, ради бога, не бросайте трубку. Пожалуйста… Я просто не знаю, что делать… Все говорят, что этот Икар упадет на Землю… Я вещи уже собрала, но я не знаю, как быть дальше?.. …Эту насмерть перепуганную женщину можно было понять. В то время журналисты всего мира не жалели самых черных красок, изображая жуткие последствия падения Икара на Землю. Предполагалось, что космический пришелец шлепнется в Индийский океан в районе Африки и поднимет громадную волну, которая, кажется, должна была омыть земной шар дважды… — Ну, и при чем здесь журналисты? — спросите вы. — Ведь не журналисты же придумали весть о падении Икара на Землю. Они лишь подхватили ее и со свойственной им предприимчивостью сделали сенсацией. И кстати, что же такое Икар? Икар — астероид, космическая крошка поперечником 1,5 километра, обращается вокруг Солнца по замкнутой орбите. Через каждые 19 лет он приближается к Земле, «делает ей ручкой» и вновь уходит в свое «прекрасное далеко». В конце 60-х годов австралийские ученые опубликовали результаты расчетов, указывающих, что в 1968 году Икар не просто сблизится с Землей, но столкнется с ней. Немудрено, что журналисты быстро разнесли это известие по всему земному шару. Мир напрягся. Однако более точные и подробные расчеты советского астронома Н. А. Беляева и других ученых не подтвердили «запланированной» катастрофы. Уточненные данные свидетельствовали, что астероид пройдет по астрономическим понятиям недалеко от Земли. Действительно, в июне 1968 года в момент наибольшего сближения Икар пронесся на расстоянии 6,36 миллиона километров от нашей планеты. Невооруженным глазом нам с вами эту маленькую планету ни за что не увидеть «даже» с 6 миллионов километров. Каким же образом она дала о себе знать? Здесь трудно удержаться, чтобы не рассказать, как вообще были обнаружены астероиды. Давайте углубимся в историю на 220 с лишним лет назад. С чего все началось?В 1766 году немецкий астроном, физик и математик Иоганн Тициус поделился интересными наблюдениями. Оказывается, если измерить расстояние от Земли до Солнца — оно равно приблизительно 150 миллионам километров и называется астрономической единицей (а.е.), — то, пользуясь некоторой формулой, придуманной Тициусом, можно оценить расстояние и до других планет. По-видимому, серьезный интерес к этой интеллектуальной находке ученые проявили лишь через 6 лет, когда другой немецкий астроном Иоганн Боде опубликовал формулу Тициуса и привел некоторые результаты, вытекающие из ее применения. С тех пор формула называется правилом Тициуса — Боде. Вероятно, многие из вас никогда не слышали о таком правиле. Математически его можно записать так: rn = 0,4 + 0,3 2n. Здесь rn — среднее расстояние от Солнца до планеты, n — число, принимающее значение — ?, 0, 1, 2, 3, 4, 5 и т. д. При этом для Земли n=1. Давайте подставим в формулу вместо n единицу и получим, что для Земли rn = 1. С помощью калькулятора вы можете посчитать расстояния для остальных планет. Не исключаю, что «такой пустяк» можно посчитать и в уме. Пожалуйста. Если не ошибетесь, то по результатам можете составить небольшую таблицу (см. табл. 1). Таблица 1. Впрочем, если вы решили считать в уме, то можно воспользоваться и другим, может быть, для некоторых более подходящим способом. Пронумеруйте планеты, против каждого номера напишите цифру 4, а затем прибавьте к первой 0, ко второй 3, к третьей 6, затем 12, 24 и т. д. Каждую сумму разделите на 10 (см. табл. 2). Таблица 2. Беглого взгляда достаточно, чтобы убедиться, что, во-первых, для планеты под номером 5 нет истинного расстояния, да, собственно, и самой планеты нет, и, во-вторых, что-то непонятное происходит с Нептуном и Плутоном. Мы уже говорили, что правило Тициуса — Боде — это не закон, подобный, например, законам Кеплера или Ньютона, а правило, которое было получено из анализа имеющихся данных о расстояниях планет от Солнца. Просто некое удивительное соотношение, мимо которого проходили долгое время. Никакого теоретического обоснования правило Тициуса — Боде не имеет. Конечно, отклонения от правила вполне естественны. Во всяком случае, их можно было ожидать. Самые серьезные отклонения проявляются по отношению к Нептуну и Плутону. Но зато для других планет совпадение просто фантастическое! Вы вправе задать вопрос: «А почему нет названия у пятой планеты и где она сама?» Когда Боде обнародовал правило в 1772 году, Уран, Нептун и Плутон еще не были открыты астрономами. И представьте себе, в 1781 году открывают Уран, и оказывается, что для него имеет место хорошее совпадение с правилом Тициуса — Боде! Именно оно подтолкнуло астрономов к поиску пятой планеты между орбитами Марса и Юпитера. Хотя при этом возникало немало споров. Широкое обсуждение вопроса состоялось на Астрономическом конгрессе в 1796 году. Дело новое, а поэтому не все его одобряли. Конечно, не всякое новое бывает действительно достойно этого определения, но даже безусловно новое часто завоевывает себе «место под Солнцем» в трудных боях. А случай правила Тициуса — Боде как раз нельзя было считать на сто процентов достоверным, и поэтому не стоит удивляться, что часть астрономов была весьма скептически настроена по этому поводу. Случайное совпадение и не более! К нашему сожалению, стенограмма этой дискуссии не сохранилась, но мы можем насладиться поучительным примером, как оптимистам удалось сломить скептиков. Che cosa e questo?Как бы то ни было, но «недостающую» планету в пространстве между Юпитером и Марсом стали искать. Я не знаю, чью сторону в этом споре взяли вы, дорогой читатель, но хотелось бы видеть вас среди оптимистов. Пока вы молоды, вас должны обуревать приступы фантазии и тяга к поиску. Но это к слову. Вернемся к нашей истории. Астрономы приступили к поиску пятой планеты. А, кстати, как бы вы повели себя на их месте, берясь за новое дело? Не думаю, что «безропотно» наводили бы телескопы в предполагаемые области неба и ночи напролет молча обшаривали его градус за градусом. Наверняка бы при этом ворчали: — Почему же эту планету еще никто никогда не видел? Предполагаемое расстояние ее от Солнца составляет около трех астрономических единиц, т. е. примерно 420 миллионов километров, а планеты не видно. А ведь Юпитер отстоит от Солнца на 780 миллионов километров, Сатурн — на 1 миллиард 400 миллионов, а Уран — почти на 3 миллиарда километров! Эти далекие планеты мы видим, а находящуюся, можно сказать, рядом до сих пор не заметили! В чем дело? Постой, постой, а может быть, она «слеплена» из другого «теста», и поэтому ее поверхность очень скупо отражает солнечный свет? Но тогда, значит, эта планета не похожа на другие? Почему? А может быть, она имеет такую угловатую форму и повернута к нам всегда такой неудобной стороной, что весь отраженный свет «стреляет» мимо Земли? Ведь вот «заупрямилась» же Луна, не показывает нам свою обратную сторону. А может быть, Марс загораживает ее от нашего взора? Да нет, что за чушь? При чем здесь Марс? Здесь что-то другое. Но что? А может быть, ее вообще нет, этой планеты? И весь этот фокус с находкой Тициуса — Боде действительно случайность? А жаль. Ей-богу, жаль! Да и, потом, Уран все-таки открыли. А ведь он отстоит от Солнца на 3 миллиарда километров! Нет, надо искать. Думаю, что похожие мысли одолевали многих астрономов. Не могли не одолевать. История показывает, как мало удается сделать в науке тем, кто не путался в сетях сомнений, для кого не служил путеводным маяком хоть слабый проблеск надежды. Конечно, в качестве иллюстрации к этой мысли хотелось бы выложить исторический факт торжества надежды над сомнением. Но, увы! На этот раз — мимо. Ни одному из наших оптимистов, несмотря на невероятные усилия, бессонные ночи, круги под глазами, не удавалось «поймать» таинственную планету. Вот так. И правило Тициуса — Боде было, и надежда была, и сомнения, и вера в конечный успех, а вот самого успеха все не было и не было… Удача далась в руки тому, кто ее меньше всего ждал. Хотя справедливости ради надо отметить, что счастливцем оказался не случайный прохожий, а преданнейший астрономии человек, который даже в новогоднюю ночь предпочел небесные наблюдения застольному торжеству. Итальянский астроном Джузеппе Пиацци в ночь с 31 декабря 1800 года на 1 января 1801 года, занимаясь наблюдениями звезд для составляемого им каталога, обнаружил, что одна из них изменила свое положение по сравнению с положением, в котором она находилась прошлой ночью. Можно смело предположить крайнее удивление Пиацци и даже без особого риска угадать первую фразу: — Che cosa e questo? (Что такое?!) Столь прыткой звезды просто не может быть. Хотя звезды постоянно находятся в движении и перемещаются в пространстве друг относительно друга со скоростями в несколько десятков километров в секунду, мы этого не замечаем. Все звезды расположены от нас на таких чудовищных расстояниях, что их видимое положение практически не меняется. Вот вам пример. Уникальная звезда Барнарда, имеющая наибольшую из известных угловую скорость движения, смещается за целый год лишь на угол 0,0023?! Конечно, нам она кажется абсолютно неподвижной. Все дело в расстоянии до звезд. Так, самая близкая к нам звезда (не считая, конечно, Солнца) Проксима Центавра отстоит от нас на расстоянии 43 000 000 000 000 километров! Эта вереница нулей написана здесь для встряски воображения. Иногда от эмоционального и откровенного «Ого!» больше пользы, чем от сдержанного и многозначительного «М-м-м». Конечно, это расстояние можно записать как 4,31013 км. Но вообще-то расстояния до звезд очень сложно и неудобно измерять в километрах, можно просто «утонуть» в бесчисленных нулях или «сломать ногу» в показателях степени. Расстояния до звезд и галактик принято измерять в световых годах или, еще чаще, в парсеках. Световой год равен расстоянию, которое свет, обладающий скоростью 300 000 км/с, пробегает за один год. Это составляет 9,46•1012 км или почти 10 000 миллиардов километров. 1 парсек равен 3,26 светового года или 3,086•1013 км. Кстати, современными наблюдательными средствами удается зарегистрировать свет, идущий от звезд, находящихся на расстояниях в миллиарды световых лет! Так что Джузеппе Пиацци было от чего прийти в волнение. Впрочем, это душевное состояние вскоре его покинуло. Итальянский астроном понял, что открыл не звезду-скороход, а планету. Но удивительное дело, блеск планеты составил только седьмую звездную величину, т. е. по блеску она была слабее Юпитера почти в 6000 раз! Чтобы подобные оценки блеска вы умели делать сами, давайте познакомимся с методом установления блеска небесных объектов, а затем продолжим наше повествование. Наследие ГиппархаБлеск звезд, планет, спутников и других небесных объектов определяется их звездной величиной. Обратите внимание, что в данном случае слово «величина» не надо отождествлять со словом «размер». Итак, блеск звезд принято оценивать в звездных величинах. При этом чем ярче звезда, тем меньше ее звездная величина. Что делать? Такая система сложилась еще во II веке до н. э., и астрономы ни за что не хотят ее менять. Автором системы является древнегреческий астроном Гиппарх из Никеи. Из той самой Никеи, слава о которой через много лет, уже в XIII веке н. э., раскатилась по всей Малой Азии. В 1204 году под ударами крестоносцев пал волшебный город Константинополь — столица процветающей Византии, а за ним и другие многочисленные княжества и земли. И лишь Никейская империя не пропустила врага в свои владения. Мало того, спустя 57 лет именно император Никеи Михаил VIII штурмом взял Константинополь и вернул Византийской империи былое величие почти на 200 лет, вплоть до рокового нашествия турок… Однако для нас с вами Никея интересна тем фактом, что здесь более двух тысяч лет назад родился блестящий астроном по имени Гиппарх. Покинув родной город, он отправился в долгое путешествие по суше и по морю и наконец обосновался на острове Родос в Эгейском море и с этого момента посвятил свою жизнь беззаветному служению науке. Наследие его многообразно, хотя от него не осталось почти никаких рукописных трудов. Именно Гиппарх дал теоретическое объяснение неравенства четырех времен года на Земле, ввел географические координаты, определил параллакс Луны и расстояние до нее, усовершенствовал тригонометрию. Обнаружение Новой звезды в 134 году до н. э. в созвездии Скорпиона, отсутствовавшей в имевшихся звездных каталогах, побудило Гиппарха к созданию нового каталога. Около 1000 звезд занес в него великий астроном, и, кстати, это его творение в течение шестнадцати столетий считалось венцом такого рода работы! Труд над составлением каталога вылился еще в два выдающихся следствия. Первое — по разным каталогам положения некоторых звезд Гиппарх обнаружил, что расстояние от точек равноденствий до звезд медленно, но непрерывно меняется. Точками весеннего и осеннего равноденствий называются воображаемые точки пересечения на небесной сфере линий эклиптики и небесного экватора, происходящего ежегодно 20 или 21 марта и 22 или 23 сентября. Это поразительное явление носит название прецессии. Второе — в ходе работы над каталогом великий грек придумал систему звездных величин, которой астрономы пользуются и по сей день. Если блеск двадцати самых ярких звезд на небе сложить и сумму разделить на двадцать, т. е. определить средний блеск этих звезд, то он как раз будет соответствовать первой звездной величине (+1m). Звезда первой величины (1m) (.обычно в случае положительных звездных величин знак «+» опускается) в 2,512 раза ярче звезды второй величины (2m), в 2,512X2,512 = 6,31 раз ярче звезды третьей величины (Зm), в 100 раз ярче звезды шестой величины (6m) и т. д. Такпм образом, каждая последующая звездная величина указывает на изменение блеска в 2,512 раза по сравнению с предыдущей. Сам Гиппарх для проведения наблюдений имел в своем распоряжении один-единственный инструмент — острые глаза. Поэтому он мог систематизировать по блеску лишь доступные глазу звезды. Звездные величины наиболее ярких небесных объектов отрицательны. Например, Арктур — ярчайшая звезда в созвездии Волопаса — имеет звездную величину (—0,06m), Сириус (созвездие Большого Пса) — (—1,43m), Юпитер — (—2,4m), Венера — (—4,Зm), Луна — (—12m), Солнце — (—27m). Кстати, почему в системе звездных величин фигурирует такое некруглое число 2,512? А просто так условились. Это оказалось очень удобным, потому что это число есть корень пятой степени из ста, и его десятичный логарифм равен точно 0,4. Запомните, разница в 5 звездных величин означает отличие в блеске в 100 раз. Звезды разного блеска создают разную освещенность в зрачках наших глаз, на эмульсиях фотопластинок, на катодах фотоэлектрических приборов. Попробуем более наглядно пояснить, что такое освещенность. Представьте себе, что вы вечером заглянули в дневник, чтобы освежить в памяти последовательность завтрашних уроков, и в это время погас свет во всем микрорайоне. Вы зажигаете спичку и при ее свете с некоторым трудом различаете свои собственные записи. Досадуя на себя, вы достаете сразу три спички и зажигаете их, чиркнув одновременно тремя головками о коробок. Теперь прекрасно видны милые сердцу строчки, и вы с ужасом замечаете, что совершенно забыли подготовить задание по физике. Итак, зажигая спички, вы обратили внимание, что одна спичка осветила страницу древника слабее, чем три. А это значит, что три спички создали большую освещенность дневника, чем одна спичка. Звезды ведут себя аналогично спичкам: более яркие создают большую освещенность, менее яркие — меньшую. Конечно, освещенность, создаваемая звездами, ни в какое сравнение не идет с освещенностью, которую создают зажженные спички. Автор одного рассказа написал о том, что герой, получив долгожданное письмо от любимой девушки, прочел его при свете сияющей Веги! Вега хоть и является самой яркой звездой в созвездии Лиры, тем не менее неспособна создать освещенность, достаточную для чтения писем, даже от любимых девушек. Давайте выберем на небе две звезды. Одна, более яркая, имеющая звездную величину т1 пусть создает освещенность Е1: а другая, более слабая (т2), создает освещенность Е2. Тогда в соответствии с нашими рассуждениями о звездных величинах мы можем написать E1/E2 = 2,512-(m1-m2) (1) Возьмем для примера m1 = 1m, а m2 = 6m и найдем отношение E1/E2: E1/E2 = 2,512-(1–6) = 2,5125 = 100. Так и должно быть. Мы уже говорили, что разница в 5 звездных величин означает различие в блеске, или освещенности, в 100 раз. Те из вас, кто уже знаком с десятичными логарифмами, могут прологарифмировать выражение (1): lg (E1/E2) = — (m1 — m2) lg 2,512 = — 0,4 (m1 — m2). (2) Отсюда можно найти разность звездных величин т1-т2 = -2,5 lg (Е1/Е2). (3) Множитель 2,5 образовался при делении 1 на 0,4. Так сколько же их?Итак, после этого небольшого ликбеза вернемся к планете, открытой Пиацци. Вы помните, что блеск ее составлял всего 7m. В то же время блеск Юпитера составляет (—2,4m). Согласно формуле (1), E1/E2 = 2,512-(-2,4–7) = 2,5129,4 = 5757. Новая планета оказалась слабее Юпитера в 5757 раз, хотя расположена к нам намного ближе! Становилось ясно, что планета имеет чрезвычайно малые размеры. Она была названа Церерой в честь древнеримской богини плодородия. По современным данным поперечник Цереры равен 1000 километров, т. е. в 13 раз меньше поперечника Земли и в 143 раза меньше поперечника Юпитера! В 1802 году была открыта «сестра» Цереры Паллада, а еще через 2 года — Юнона, и еще через 3 года — Веста. Все эти планеты были названы астероидами — «звездоподобными», а пространство между орбитами Марса и Юпитера, в котором они обитают, поясом астероидов. К 1860 году были открыты уже 62 астероида. В начале 90-х годов прошлого столетия немецкий астроном Макс Вольф стал широко применять фотографию для поиска новых астероидов. Как он это делал? Давайте вспомним, как работает телескоп. Труба телескопа наводится на объект, скажем, на ту самую Бегу. Чтобы наблюдать ее долгое время, в течение часа или двух, необходимо, чтобы объект все время находился в поле зрения телескопа. Это непросто сделать. Представьте себе, что вы катаетесь на карусели. Вы счастливы, но нет поблизости ни одного знакомого, кто мог бы оценить степень вашего «карусельного» счастья. Такая досада! И вдруг, о радость! Мимо идет ваш одноклассник, вы зовете его, но очень шумно и он не слышит. А карусель уносит вас по дуге, и вы, чтобы не потерять товарища из виду, поворачиваете голову в его сторону и усиленно машете ему рукой. Вот точно так по дуге Земля в своем суточном вращении переносит телескоп, и, чтобы звезда оставалась все время в поле его зрения, нужно непрерывно поворачивать телескоп в сторону, противоположную вращению Земли. Если это удается сделать, то в течение всего времени наблюдений все звёзды, попавшие в поле зрения телескопа, не уйдут из этого поля зрения. Осуществляется такое наведение с помощью специального механизма вращения, который часто называют часовым механизмом, поскольку он работает по принципу механических часов. За 1 час звезды смещаются на 15 градусов. В этом вы легко можете убедиться, если отметите положение какой-либо звезды в двух точках на небе, соответствующих моментам наблюдения, скажем в 10 и И часов вечера местного времени, а затем измерите угловое расстояние между этими точками с помощью самодельного угломера, сделанного пз транспортира, — оно окажется равным 15°. Можно получить эту величину и теоретически. Поскольку Земля делает один полный оборот вокруг своей оси за 24 часа, а звезда за это время «описывает» полный круг, т. е. 360°, то, деля 360° на 24 часа, получаем 15 градусов в час. Именно с такой скоростью, 15 градусов в час, должен вращаться телескоп, чтобы звезды не уходили из его поля зрения в течение всего времени наблюдения. Если в процессе наблюдения в фокальной плоскости окуляра телескопа расположить не глаз, а фотопластинку, то на ней запечатлится участок звездного неба, и изображения звезд будут в виде точек (рис. 1). Естественно, если при фотографировании звезд таким образом в поле зрения телескопа окажется самолет, спутник, метеор или какой-то другой подвижный объект, след его па фотопластинке будет запечатлен в виде линии, или трека (рис. 2). Именно это имел в виду Вольф, приступая к поиску астероидов. При длительных экспозициях звездного неба астероид, если он окажется в поле зрения телескопа, даст изображение в виде черточки или линии. Это произойдет вследствие собственного движения астероида среди неподвижных звезд. Рис. 1. а — Созвездие Большой Медведицы, сфотографированное с помощью часового механизма (звезды в виде точек). б — то же созвездие, сфотографированное без применения часового механизма (звезды в виде дуг) Рис. 2. На фоне точечных изображений звезд легко обнаружить незвездные объекты: след искусственного спутника Земли (1), метеор (2), астероид (3) Вольф свято верил в плодотворность своего метода и был вознагражден. Только он одип обнаружил около 600 новых астероидов! К 1938 году общее число открытых астероидов достигло 1500. Вообще говоря, особую ценность представляют так называемые нумерованные астероиды. Для них удается вычислить орбиту, т. е. весь путь движения астероида вокруг Солнца. Сейчас общее число нумерованных астероидов превышает 2500. Почти все они имеют собственные имена, Может возникнуть вопрос: а кто присваивает астероидам имена? Конечно, люди, их открывшие. Так было в прошлом веке, так происходит и сейчас. Вы помните, что первые астероиды были названы именами римских и греческих богинь: Церера, Паллада, Юнона, Веста. Эту красивую традицию первооткрыватели решили не нарушать. В дальнейшем вновь открытые астероиды нарекались исключительно именами богинь, сначала римских и греческих, затем скандинавских, ближневосточных и др. Однако астероиды «посыпались» как из рога изобилия, и вскоре «кладовая» богинь иссякла. Пришлось использовать имена богов мужского рода. Традиция нарушилась, но что делать, если реальных малых планет оказалось значительно больше, чем придуманных богинь. Но и боги-мужчины тоже проблему не решили. Запас их тоже скоро иссяк, нужно было срочно «опускаться с неба на Землю». Тем более, что опыт уже был. Еще на заре охоты за астероидами, в 1850 году, английский астроном Д. Хинд астероиду № 12 дал имя английской королевы Виктории. Представляете, в какое неловкое положение он поставил чопорное общество туманного Альбиона? С одной стороны — нарушение святая святых Ее Величества Традиции, с другой — нарушение во славу Ее Величества Королевы, здравствующей и процветающей. Откуда было знать Хинду, что правление Виктории замкнет Ганноверскую королевскую династию, состоявшую из четырех королей Георгов, одного Вильгельма и самой Виктории (1814–1901). Тем более, что сама королева, по-видимому, готова была смотреть на факт нарушения традиции сквозь пальцы. В итоге победили реалии: традиция все-таки вещь формальная, некоторые отклонения ей особенно не повредят, а вот самолюбию королевы весьма польстит вознесение ее имени на небо. Кроме того, в распоряжении Хинда имелся еще один козырь. В римской мифологии Викторией звалась богиня победы. Таким образом, наиболее консервативные побор-пики непоколебимости традиций могли в душе считать, что на самом-то деле никакого нарушения традиции не произошло. Тем более, что следующий, тринадцатый по счету астероид получил имя богини Эгерии. Кстати, традиция имела еще одну сомнительную сторону: астероидам вообще не давали мужских имен независимо от того, принадлежали они богам или людям. Поэтому, когда имена богинь иссякли и первооткрыватель хотел посвятить свой астероид выдающемуся мужчине, он феминизировал его имя. Так, астероид № 981 в честь героя кубинской революции Хосе Марти был назвал Мартиной. Астероид № 1000 назвали Пиацция в честь открывателя Цереры, № 1001 — Гауссия в честь великого математика Карла Фридриха Гаусса. Астероид № 852, посвященный В. И. Ленину, был назван первооткрывателем С. И. Белявским Владиленой. Но наше бурное своенравное время сломало жесткие рамки «небесного классицизма»; астероиды, открытые в последние десятилетия, назывались именами крупных ученых, писателей, общественных деятелей. Среди них Гагарин, Королев, Высоцкий и многие другие. Некоторые первооткрыватели посвящают открытые астероиды своим близким. Например, существует астероид Витя. Иногда с большим трудом открытые астероиды вдруг терялись. Их не удавалось обнаружить в течение многих лет. Наблюдалась и обратная картина: 5–6 астероидов, открытых в разное время, на самом деле оказывались одним и тем же объектом. Вы, конечно, понимаете, что такого рода казусы происходят из-за очень малого блеска большинства астероидов. Мало того, что их очень трудно отыскать среди множества звезд, но и провести соответствующие измерения координат и по ним вычислить орбиты — тоже труд каторжный. За кажущейся простотой охоты за астероидами скрываются не только радость победы, но и зачастую горечь разочарования и ошибок. Впрочем, никакой вид творчества от этого не застрахован. Много могли бы рассказать по этому поводу наши известные энтузиасты и тонкие специалисты «астероидного дела» ленинградские астрономы Николай Степанович Черных и Людмила Ивановна Черных. Их деятельность неразрывно связана с Крымской астрофизической обсерваторией АН СССР, где они проводят свои наблюдения. Белые вороныНу, так, все это хорошо, а где же Икар? Где этот возмутитель спокойствия, угрожавший нашему благополучию? И, кстати, каким это образом астероид, «живущий» в пространстве между орбитами Марса и Юпитера, мог угрожать столкновением с Землей? Земля не может проникнуть в пояс астероидов, а астероиды не выходят за пределы орбиты Марса. В чем же дело? Действительно, подавляющее большинство астероидов «прописаны» на своей «исконной» территории. Однако еще в 1873 году был открыт астероид Аэрта. Когда астрономы вычислили его орбиту, они были поражены результатами. Оказалось, что ее перигелий находился внутри орбиты Марса. Это значит, что часть орбиты Аэрты «выбралась» из пояса астероидов. Но ведь этого не может быть. По-видимому, в расчетах была допущена ошибка. Хорошо бы еще раз провести как можно более тщательные наблюдения, пересчитать орбиту и восстановить истину. Иначе рушится вся картина. Действительно, в пространстве между Марсом и Юпитером в течение целых тысячелетий никто не видел никаких планет. И вот согласно эмпирической формуле Тициуса — Боде именно в этом пространстве должна быть планета. Ее ищут и — о, чудо — находят! Ну, прямо детективная история! Однако планета очень мала. Разочарование? Ни в коем случае, оказывается, небесных малюток очень много. Просто новый поворот детективного сюжета. Малые планеты сыплются на алтарь науки, как из рога изобилия. И все они «днюют и ночуют» в поясе астероидов. Конечно, все это загадочно, но мы уже начинаем к этой загадке привыкать. И вдруг эта Аэрта с ее аномальной орбитой. Нет, конечно, здесь что-то не так. Скорее всего, просто ошибка. Надо побыстрее ее устранить и не отвлекаться на фантазии. Но детектив есть детектив. Его повороты непредсказуемы. Аэрту пронаблюдать второй раз не удалось. Астероид был потерян. Надо же, какое невезенье! А ведь так всегда хочется довести дело до логического конца, чтобы даже в мыслях к нему не возвращаться. Казалось бы, чего проще: тщательно провели наблюдение, как можно точнее определили необходимые данные и вычислили орбиту. Орбиту, которая заняла бы свое законное место. Но, вот — не судьба. Досадная загадка астероида Аэрты всплыла лишь через 50 лет, когда ее обнаружили вновь. Ну, наконец-то! Однако орбита, вычисленная теперь, не отличалась от той, которая была рассчитана полвека назад. Но к этому времени Аэрта была уже не единственной «белой вороной». Было установлено, что у нескольких ее собратьев орбиты заходили внутрь орбиты Марса. Значит, все-таки новый поворот в детективном сюжете. И сразу множество вопросов. Что делают эти «паломники» вдали от своей «общины»? Что заставило их уединиться? Имеют ли они генетическую связь с поясом астероидов или это представители из «красной небесной книги»? Ведь если это не исключение, а правило, то какой-нибудь лихой путешественник и до орбиты Земли доберется. Действительно, в 1898 году был обнаружен очень слабый объект, перемещавшийся среди звезд значительно быстрее, чем любой ранее обнаруженный астероид. Расчеты показали, что диаметр астероида не превышает 25 километров, а сам он движется на расстоянии около 22 миллионов километров от Земли! Напомним, что Марс приближается к Земле в эпохи великих противостояний на 55 миллионов километров. Значит, «нормальные» астероиды всегда должны располагаться значительно дальше. А этот малыш подобрался почти в три раза ближе к Земле. Когда вычислили его орбиту, оказалось, что он вообще «бездомный» — афелий его орбиты далее не достигал кольца астероидов, а перигелий приближался к орбите Земли. Таинственный объект получил имя Эрос. Новый детективный персонаж вошел в историю в 1911 году. Был открыт астероид Альберт, подходивший к орбите Земли почти так же близко, как и Эрос, но при этом его афелий находился на 180 миллионов километров дальше, чем кольцо астероидов! После этого странные астероиды стали «попадаться» не очень часто, но достаточно регулярно. Рис. 3. Орбита Икара В 1949 году был открыт, наконец, Икар. Номер этого астероида 1566. В своем кругосветном вояже он всякий раз настолько близко подходит к Солнцу, что проникает внутрь орбиты Меркурия! К Солнцу Икар приближается на расстояние в 28,5 миллионов километров. Его поверхность на солнечной стороне раскаляется до такой степе-пи, что, будь на ней цинковые или свинцовые горы, они растеклись бы расплавленными ручьями. Температура поверхности Икара превышает 600 °C! Посмотрите на рис. 3, где изображена орбита Икара. В период между 1949 и 1968 годами Икар подошел близко к Меркурию, который своим гравитационным полем чуть-чуть изменил орбиту прыткого астероида. Расчеты австралийских астрономов показали, что это «чуть-чуть» может надолго запомниться обитателям Земли: при следующем сближении Икара с нашей планетой в 1968 году он рухнет в Индийский океан в районе африканского побережья! Ни много ни мало! За год до предполагаемой «катастрофы» автор этих строк находился в командировке в Республике Сомали (то самое восточное побережье Африки) и имел возможность познакомиться с широкой «икаровой» прессой различных африканских стран. Так, один итальянский журналист сокрушался по поводу судьбы морского космодрома Италии под названием Сан-Марко, размещенного в Индийском океане в нескольких километрах от побережья Кении. Этот плавучий космодром только-только начал функционировать… Впрочем, повод для беспокойства был не только у итальянского журналиста. Перспектива «купания» Икара в Индийском океане многих и менее экспансивных людей не оставляла равнодушными. Ведь Икар — крошка по астрономическим меркам, а результат его визита в масштабах наших представлений был бы эквивалентен по мощности взрыву около 1000 водородных бомб! Вообразите теперь состояние некоторых читателей, которых их любимые газеты развлекали такого рода оценками. Сенсационные результаты австралийских коллег перепроверили советский астроном Н. А. Беляев и американец С. Херрик, после чего человечество успокоилось. Оказывается, Икар действительно тесно должен сблизиться с Землей. Но эта теснота сугубо астрономическая. В момент максимального сближения оба небесных тела будут разделены «всего лишь» 6 миллионами 360 тысячами километров. А у астрономов 6 миллионов километров — не расстояние! 14 июня 1968 года в 22 часа 30 минут по московскому времени Икар действительно прошел мимо Земли, как было предсказано. Его даже наблюдали астрономы-любители с помощью небольших любительских телескопов, благо двигался он в это время на фоне знакомых звезд Большой и Малой Медведиц. Сегодня каждый из вас, найдя на небе эти созвездия, может представить себе, как маленький космический «прыщик» 11-й звездной величины катился по небу, ехидно подмигивая царям природы! Кстати, понтонный космодром Сан-Марко по сей день исправно функционирует. С него регулярно отправляются в космос на работу итальянские, английские и небольшие американские спутники… Эхо Троянской войныНо вернемся на 85 лет назад. В 1904 году был открыт еще один необычайный астероид, названный Ахиллом. Поражала его орбита, практически совпадающая с орбитой небесного гиганта — планеты Юпитера. Разумеется, Ахилл не был в дальнейшем обделен вниманием исследователей. Ведь без ответа оставался вопрос: что заставило Ахилла покинуть родной пояс астероидов (если, конечно, местом его рождения действительно был пояс астероидов) и переселиться так далеко, и не куда-нибудь, а именно на орбиту Юпитера? Со временем ситуация обострилась. Были открыты еще около 20 астероидов, также облюбовавших для постоянного жительства орбиту Юпитера. При этом выяснилось, что таинственные переселенцы живут там двумя обособленными колониями. Астероиды первой колонии, в число которых входит и Ахилл, движутся впереди Юпитера, как бы составляя авангард его охраны. Члены второй колонии следуют позади «владыки», замыкая небесный кортеж. Обе группы были названы «троянцами» в честь участников знаменитой Троянской войны, описанной Гомером в бессмертной «Илиаде». Древний город Троя, раскинувшийся на территории современной Турции, был обнесен могучей стеной и представлял собой неприступную крепость. Десять лет ахейский царь Агамемнон пытался завоевать Трою. Длительная осада Великого города не приносила успеха. Город не сдавался. Его невозможно было взять силой, решили попробовать хитростью. Агамемнон собрал самых талантливых мастеровых среди своих подданных и приказал им построить огромного деревянного коня на колесах. Внутри этой необычной игрушки были оборудованы специальные ниши, в которых разместились греческие воины. Ночью греки подкатили коня к воротам Трои. Когда первые лучи утреннего солнца позолотили небо, осажденные пришли в изумление. Прямо против ворот стоял гигантский конь, и прохладный ветерок ласково трепал его искусственную гриву. Постарались греческие мастера. Красавец-конь вызвал немало толков в осажденном городе. Целый день толпились люди на крепостных стенах, изнемогая от любопытства. Разведчики, высланные командованием, подтвердили первое впечатление о необычайном сооружении: уникальный конь — произведение искусства, созданное из дерева, дорогих тканей с тонкими красками, одухотворенное талантом художников и выдающихся мастеров. Военного значения не имеет, скорее всего, это дар Агамемнона героической Трое. Решено было дар принять. Так гигантский конь оказался в самом сердце Трои, на городской площади. Нескончаемым потоком до самой темноты ходили вокруг него восхищенные троянцы. Наконец город затих. Троя видела свой последний сон. Глубокой ночью гигантское чрево коня распахнулось, и сорок десантников, перебив охрану, отомкнули ворота и впустили в город греческих завоевателей. Троя бнла разрушена… Вот такая сказочная, хотя и печальная история. А может, и не история вовсе, а выдумка. Может быть, не было никакого Троянского коня, да и самой Трои никогда не было? Мало ли что можно придумать. Но вот в 1870 году при раскопках холма Госсарлык немецкий археолог Генрих Шлиман обнаружил древнюю Трою. Исследования показали, что около 1260 года до н. э. Троя находилась в продолжительной осаде и в конце концов была разрушена до основания. Так что великий Гомер познакомил нас с историческим фактом… Но вернемся к астероидам. Группа Ахилла, в которую входят астероиды Агамемнон, Аякс, Гектор, Диомед, Нестор, Одиссей и другие «греки», так и названа «греками». Вторая группа с Анхизом, Патроклом, Приамом, Энеем и множеством других названа «троянцами». Взгляните на рис. 4. Не правда ли, изящная картинка? В центре Солнце, вокруг него орбиты Марса и Юпитера, и ровно на 60° по ту и другую сторону от самого Юпитера расположились два «враждующих» лагеря. Вот такой вереницей «греки» — Юпитер — «троянцы» и движутся по одной и той же орбите вокруг Солнца. При этом Юпитер выполняет великую миротворческую миссию, не давая сблизиться двум «армиям» и затеять повторную истребительную «Троянскую войну». Шутки шутками, а удивительная правильность небесного ромба (рис. 4) просто поражает! Какая тонкая закономерность лежит в основе этой геометрии? Доступна ли она нашему пониманию? Ведь посмотрите, и «греки» и «троянцы» находятся в вершинах двух правильных треугольников. Почему? Рис. 4. Изумительный по своей правильности небесный ромб? Солнце — «греки» — Юпитер — «троянцы» В начале XVII века немецкий астроном Иоганн Кеплер установил три закона движения планет, носящие его имя. Формулировка их удивительно проста и лаконична: 1) каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце; 2) радиус-вектор планеты в равные промежутки времени описывает равновеликие площади; 3) квадраты времен обращения планеты вокруг Солнца (квадраты периодов) относятся как кубы больших полуосей орбит. Фундаментальная глубина этих законов была до конца понята на основе закона всемирного тяготения, открытого Исааком Ньютоном. Внешняя простота законов Кеплера была обусловлена тем, что они описывали взаимодействие только двух тел, а именно Солнца и планеты, без учета влияния остальных тел Солнечной системы, поскольку это влияние для таких случаев чрезвычайно мало. Однако если рассматривать движение астероида вокруг Солнца, то может оказаться, что влияние таких «важных лиц» Солнечной системы, как гигант Юпитер, окажется существенным. В таком случае для описания движения астероида необходимо рассматривать взаимодействие трех тел: Солнца, Юпитера и астероида. В небесной механике подобное рассмотрение называется решением задачи трех тел. Еще за полвека до открытия первого астероида французский астроном Жозеф Лагранж исследовал некоторые особые варианты задачи трех тел, в частности Солнца, планеты и малого тела. Ему удалось выявить поразительную закономерность, а именно: в системе трех тел, связанных друг с другом силами тяготения, существуют пять точек, в которых силы, действующие на малое тело, уравновешиваются. Может ли такая закономерность быть справедливой для случая астероидов? Может. Из исследования Лагранжа вытекает, что если первое тело имеет крошечную массу по сравнению с массами двух других тел, а масса второго меньше 0,04 массы третьего тела, то все они будут вращаться вокруг общего центра масс, и при этом их расположение друг относительно друга останется неизменным. Это условие в нашем случае соблюдается с избытком: массы астероидов ничтожны по сравнению с массами планет, а масса Юпитера составляет 0,001 массы Солнца. Итак, «троянцы» находятся в двух из пяти лагранжевых точек, L4 и L5, являясь вершинами равносторонних треугольников, у которых в двух остальных вершинах расположены Солнце и Юпитер. Каждая сторона этих гигантских треугольников составляет 5,2 астрономические единицы или 780 миллионов километров! С Земли удается наблюдать лишь самые крупные астероиды этих групп, размеры которых несколько больше 100 километров, подавляющая же их часть — это многочисленные мелкие астероиды, не доступные наблюдениям. История открытия «троянцев» и объяснения их биографии просто восхитительна! Вы уже не раз имели возможность убедиться, как трудно обнаружить астероиды. И тем не менее наблюдательным путем удалось выявить эти в общем-то экзотические группы астероидов, и не просто выявить, но еще и теоретически обосновать закономерность существования таких групп. А ведь сам Лагранж, получивший свое решение задачи трех тел, не верил в его реализацию в природе. Он получил эстетическое наслаждение от самого процесса творчества, от красоты решения, как он полагал, чисто математической идеализированной задачи. Но поистине, ни одно красивое творение не бывает бесполезным! Небесные правила «уличного» движенияКогда было определено достаточно много орбит астероидов, выявилась следующая загадочная закономерность. Оказывается, пространство в поясе астероидов заполнено веществом неравномерно. Взгляните на рис. 5. На нем видны области сгущения, концентрации орбит (темные кольца) и области разрежения, в которых астероиды отсутствуют. Поразительно, но астероиды по какой-то причине избегают этих областей! Рис. 5. Области большой концентрации орбит астероидов (темные кольца) отделены друг от друга люками Кирквуда (масштаб для наглядности не соблюден) Впервые эти «запретные зоны» обнаружил американский ученый Джон Кирквуд, поэтому они называются люками или окнами Кирквуда. Что же явилось причиной такой избирательной политики в заселении пояса астероидов? Неужели опять Юпитер? Представьте себе — опять он. Своим гравитационным притяжением он «разрешает» движение астероидов только в определенных областях пространства. Прямо небесные правила уличного движения! И надо сказать, очень жесткие. Люки Кирквуда можно проиллюстрировать с помощью диаграммы. Для этого введем новое понятие — среднесуточное движение. В общем-то лишь ничтожная часть астероидов имеет вытянутые или, как их еще называют, аномальные орбиты (Икар, Аэрта, Альберт и др.). Большинство же астероидов подобно планетам обладают орбитами почти круговыми. Время, за которое небесное тело делает один оборот вокруг Солнца, называется периодом обращения. При этом оно описывает полную окружность, содержащую, как известно, 360°, или более миллиона угловых секунд (1,296106"). А что такое среднесуточное движение? Это расстояние в угловых единицах, которое проходит планета на небосводе за одни сутки. Поскольку период обращения Земли вокруг Солнца составляет в среднем 365,25 суток, среднесуточное движение Земли будет равно 1,296106": 365,25= 3548". Период обращения Юпитера равен 11,86 земных лет, т. е. один оборот вокруг Солнца он делает за 365,25 X 11,86 = 4331,865 земных суток, и, следовательно, среднесуточное движение Юпитера составляет 1,296106 ': 14331,865 = 299". Легко сообразить, что среднесуточное движение любого небесного тела можно получить при делении 3548" на период обращения этого тела, выраженного в земных годах. Для Юпитера оно равно 8548": 11,86 = 299". Период обращения Марса составляет 1,88 земного года, и, следовательно, его среднесуточное движение равно 3548": 1,88= 1887". Рис. 6. Распределение числа астероидов в зависимости от среднесуточного движения Таким образом, чем короче период обращения тела, тем больше его среднесуточное движение, и наоборот. Взгляните на рис. 6. В месте, соответствующем значению среднесуточного движения Юпитера 300", расположилась группа «троянцев». Кстати, для краткости среднесуточное движение обозначим символом n. Так вот, в следующем интервале n от 300" до 400" астероиды отсутствуют. Затем в месте, чуть большем 400", находится один-единственный астероид Туле. И вновь «провал» до значения n = 450", где 15 астероидов составляют обособленную группу Гильды. Давайте найдем отношение среднесуточного движения Гильды nг к среднесуточному движению Юпитера nю: nг/nю = 450"/300" = 3:2, т. е. за то время, когда Юпитер сделает два оборота вокруг Солнца, группа Гильды успевает сделать ровно три. Из рис. 6 видно, что в точках при значениях n=600", 750", 900", в которых отношения n к nю составляют соответственно 2:1, 5:2, 3:1, астероидов практически нет. Могучий Юпитер за время существования пояса астероидов «снял» астероиды с этих «запрещенных» орбит и «пересадил» на другие, более устойчивые. Поразительно, что Кирквуд открыл люки еще в 1866 году, когда были известны всего лишь 88 астероидов. За сто с лишним лет после этого были обнаружены тысячи новых астероидов, но закономерность, установленная Кирквудом, сохранилась. В тех случаях, когда значения среднесуточных движений небесных тел относятся друг к другу как простые целые числа, например 2: 3, 1: 2 и т. д., их орбиты называются соизмеримыми. Оказывается, в Солнечной системе наблюдается большое количество таких соизмеримостей. Например, значения среднесуточных движений Юпитера и Сатурна относятся как 2:5, Плутона и Нептуна — как 3:2. Расположение астероидных люков регламентируется Юпитером — ближайшей планетой-гигантом. А вот, любопытно, какие порядки установлены в пространстве между орбитами двух планет-гигантов — Юпитера и Сатурна? Представим себе, что в этой области тоже образовался пояс астероидов, причем все члены пояса равноправны и равномерно распределены в указанном пространстве. Какова была бы судьба такого пояса? Оказывается, в очень короткий срок разыгралась бы космическая драма. Планеты-гиганты, «не договорившись» между собой, выбросили бы 85 % всех астероидов из общей зоны своего влияния уже за 6000 лет! Срок по астрономическим меркам чудовищно короткий. Могли бы сохраниться лишь две группы астероидов, расположенных на расстояниях от Солнца 6,8 и 7,5 астрономической единицы. Первая группа соответствует соизмеримостям среднесуточных движений Юпитера и Сатурна, т. е. 3: 2 и 3: 5, а вторая — соизмеримостям 7: 4 и 7: 10. В данном случае эти соизмеримости соответствуют устойчивым орбитам астероидов, сумевших удовлетворить «амбициям» и Юпитера, и Сатурна. Мало того, исследования привели к следующему поразительному выводу: если бы в пространстве между орбитами Юпитера и Сатурна существовали астероиды с массами Земли, Марса или Венеры, то всего через несколько тысяч лет (!) они были бы выброшены за пределы этого пространства. Вот какие гигантские возможности таят в себе большие планеты. Именно они формируют стратегию существования более мелких тел Солнечной системы. 41 год назад был открыт астероид Торо, и с тех пор после каждого очередного успешного наблюдения он обрастал массой удивительных подробностей. В 1972 году было обнаружено, что Земля, Венера и Торо «небезразличны» друг другу, поскольку астероид близко подходит к обеим планетам. Перигелий его орбиты располагается между орбитами Земли и Венеры, а афелий чуть дальше орбиты Марса. Размеры орбит Торо, Венеры и Земли таковы, что за то время, пока астероид сделает 5 оборотов вокруг Солнца, наша планета их сделает 8, а Венера — целых 13. Соизмеримости 5: 8 движения Торо с движением Земли должно было бы соответствовать среднесуточное движение n = 2217.62", а соизмеримости с движением Венеры 5:13 — n = 2218,34". Однако величина n у Торо меняется за 100 лет от 2215,0" до 2222,0". Оказывается, планеты раскачивают его орбиту, «играя» между собой в пинг-понг. Сначала Венера делится с астероидом энергией, улучшая соизмеримость с Землей, затем Земля возвращает долг вежливости, улучшая соизмеримость с Венерой. Рис. 7. Проекция траектории Торо на плоскость эклиптики в системе координат, вращающейся с Землей Посмотрите, какие удивительные кружева рисует природа, если траекторию астероида спроецировать на плоскость эклиптики в системе координат, вращающейся с Землей вокруг Солнца! Подобный же небесный орнамент был бы виден, если бы мы воспользовались другой системой координат, вращающейся вокруг Солнца уже с Венерой (рис. 7). Удивительному астероиду посвятил поэтические строки А. В. Бялко — автор известной вам книги «Наша планета — Земля» (М.: Наука, 1989.—Библиотечка «Квант», вып. 29): Автограф Торо строг и строен Советуем также познакомиться со статьей: Бялко А. В. Торные тропы Торо. — Квант, 1983, № 12, с. 20, Не могу удержаться, чтобы не обратить ваше внимание на еще один пример изящной соизмеримости. Это кольца Сатурна. На заре исследований столь уникальной системы всерьез рассматривался вопрос о том, что кольца — это твердые тонкие диски или даже жидкие образования. Однако вскоре было теоретически доказано, что и в том и другом случаях кольца не могли бы долго существовать. Их в очень короткое время разрушили бы сильные гравитационные возмущения, порожденные экваториальной частью планеты. В конце концов тонкие спектральные наблюдения колец с Земли показали, что вокруг Сатурна движутся скопления огромного множества мельчайших тел, причем каждое тело — по своей индивидуальной орбите. Вот такой своеобразный пояс «астероидов» принадлежит лично Сатурну. Эти выводы получили блестящее подтверждение после полетов вблизи Сатурна космических аппаратов «Пионер-11» и «Вояджер-1». Рис. 8. Кольца Сатурна: В — самая яркая часть колец; она отделена от более темного кольца А щелью Кассини; С — креповое кольцо Так вот, в поясе Сатурна четко видны щели, разделяющие кольца. Возможно, вам приходилось слышать о знаменитой щели Кассини, разделяющей кольца А и В (рис. 8). Образование щелей связывают с влиянием трех ближайших спутников Сатурна, а именно Мимаса, Энцелада и Тефии, «исполняющих обязанности» Юпитера в обычном поясе астероидов. Прямо какие-то наместники Юпитера в вотчине его соседа! Щель Кассини находится на таком расстоянии от Сатурна, на котором частицы кольца имели бы средние движения, в два раза большие, чем средние движения Мимаса, в три, чем Энцелада и в четыре, чем Тефии. Щель между кольцами В и С находится на расстоянии, на котором среднее движение частиц в три раза больше, чем среднее движение Мимаса. Таким образом, очень похоже, что щели в кольцах Сатурна — это те же люки Кирквуда в поясе астероидов. Наблюдаются соизмеримости и в системах спутников планет. Прекрасная иллюстрация — четыре галилеевых спутника Юпитера: Ио, Европа, Ганимед и Каллисто. Со времени их первого наблюдения Галилеем в 1610 году эти спутники уже более 370 лет находятся «под контролем» астрономов. За это время спутники совершили почти 100 тысяч оборотов вокруг Юпитера, не нарушив своих соизмеримостей. А вот и Фаэтон!Однако вернемся к поясу астероидов. Помните, с чего все началось? С правила Тициуса — Воде, с поиска недостающей планеты, с обнаружения Цереры и тысяч крупных и мелких астероидов. И уже на заре всех этих событий ученых интересовал вопрос, как же образовался этот поразительный «шлейф» малых планет. Если заглянуть в табл. 1, то видно, что правило Тициуса — Боде говорит нам о том, что пятая планета должна была бы находиться на расстоянии 2,8 а. е. от Солнца. Так может быть, такая планета действительно существовала? Не тысячи и миллионы мелких астероидов, а одна большая, нормальная планета? Но почему ее нет сейчас? Возможно, произошла чудовищная космическая катастрофа, в результате которой пятая по счету планета погибла, взорвалась, распалась, и лишь бесконечное множество ее осколков остались немыми свидетелями страшной трагедии. Впрочем, немыми ли? Да ни в коем случае! Пояс астероидов — это уникальная подсказка природы, помогающая подобрать ключи к решению проблемы о механизме образования планет. Еще известный немецкий астроном и врач Генрих Ольберс, открывший Палладу и Весту, высказал гипотезу о существовании когда-то планеты. От чудовищного внутреннего или внешнего удара планета взорвалась, породив тучи астероидов и космической пыли. По греческой мифологии сын бога солнца Гелиоса Фаэтон вывел без спроса золотую колесницу своего отца, запряженную парой огнедышащих коней, и устроил шумные катанья. Носясь с бешеной скоростью, олимпийский лихач не справился с управлением на каком-то небесном вираже и разбился вдребезги вместе с дорогой колесницей и чудо-рысаками. Именно поэтому гипотетическая планета названа Фаэтоном. Сто пятьдесят лет гипотеза Ольберса о Фаэтоне будоражила умы людей. Возможно, и вам симпатична мысль о том, что некогда существовала пятая планета, которую постигла такая необычная участь. Однако не будем спешить. Мы уже знаем, что определенные группы астероидов имеют сходные орбиты. Логично предположить, что если астероиды возникли в результате разрушения планеты при столкновении или при взрыве, то их орбиты должны были бы пересекаться в той точке пространства, в которой произошла катастрофа. Ведь именно из этой точки веером или параллельным потоком устремились продукты распада в самостоятельный путь вокруг Солнца. Однако такой точки в поясе астероидов не существует. Вот досада! Но не надо отчаиваться. Не исключено, что могучий Юпитер растрепал остатки планеты до такой степени, что орбиты потеряли свой первоначальный вид. Но даже если это так, сторонникам Фаэтона придется преодолеть еще немало порогов и подводных камней. Мы вернемся к этой проблеме после того, как обсудим некоторые нюансы внутреннего «общежития» в поясе астероидов. В процессе этого общежития происходят взаимные столкновения малых планет, в результате которых оба столкнувшихся тела дробятся на более мелкие осколки. Путем несложных рассуждений мы убедимся, что с течением времени частота взаимных столкновений возрастает. Если в поясе астероидов движутся два тела с радиусами R1 и R2, то вероятность их взаимного столкновения пропорциопальна сумме их поперечных сечений: ?R12 + ?R22. Пусть после столкновения каждый из астероидов раздробился на 8 одинаковых осколков. Обозначим радиусы образовавшихся осколков через r1 и r2. Запишем условия равенства объемов первоначальных тел и образовавшихся осколков: откуда получим
Вероятность дальнейшего столкновения между любыми двумя из образовавшихся 16 осколков пропорциональна сумме всех их поперечных сечений:
Вы видите, что эта величина в два раза больше, чем сумма поперечных сечений двух первоначальных астероидов, т. е. частота столкновений возросла. Можете себе представить, какие разрушительные процессы протекают в поясе астероидов. По образному выражению немецкого астрофизика А. Унзольда, «пояс астероидов — это каменоломня Солнечной системы!» Часть космического щебня, образовавшегося в астероидной дробилке, разлетается «по белу свету» и достигает орбиты Земли. Влетая в атмосферу нашей планеты с огромными скоростями, мелкие осколки астероидов сгорают в ней дотла, а остатки более крупных достигают земной поверхности. Такие космические «гостинцы» называются метеоритами. К большому удовольствию ученых, которые собирают и изучают метеориты, количество небесных камней, выпадающих на Землю, достаточно велико. Ежегодно падают несколько сотен тонн метеоритов, которые могут быть найдены. Однако из них почти 75 % падают в моря и океаны, а подавляющая часть «сухопутных» метеоритов — в ненаселенные или почти ненаселенные районы. И тем не менее коллекции многих стран весьма представительны. Это уникальный материал, доставляемый в физические и химические лаборатории самой природой. В тех случаях, когда удавалось наверняка определить орбиту найденного метеорита, она однозначно указывала, что объект исследования прибыл из пояса астероидов. Таким образом, при решении вопроса о происхождении пояса астероидов нужно в первую очередь привлечь прямые и косвенные сведения, доставляемые нам именно метеоритами. Еще в 50-х годах нашего столетия против трогательной гипотезы Ольберса о Фаэтоне появились первые, но убедительные возражения, основанные как раз на данных о метеоритах. Во-первых, было показано, что метеориты неоднородны по химическому составу и, во-вторых, что они никак не могут быть продуктами разрушения большой планеты, подобной Земле или Марсу, поскольку тогда они ни за что не смогли бы сохранить свою кристаллическую структуру. В недрах массивной планеты такая структура неминуемо была бы разрушена. Наконец, очень тонкие, безупречные в методическом плане физико-химические исследования структуры, состава и других характеристик метеоритов вообще привели к выводу, что метеоритное вещество могло формироваться и прийти к сегодняшнему состоянию только в небесных телах астероидных масс и размеров. Что случилось с динозаврами?В начале 70-х годов была предпринята попытка спасти гипотезу о Фаэтоне. Была вычислена его гипотетическая масса и показано, что разрушение произошло около 16 миллионов лет назад. Осталось дело за малым — установить причину взрыва. Тщательно были проанализированы все возможные источники энергии, способные реально привести к катастрофе такого масштаба. И оказалось, что их энергия в тысячи и десятки тысяч раз слабее необходимой. Оставалось одно — «идти на поклон» к всемогущему Юпитеру. И что же? Неужели он? Да, представьте себе. Оказалось, что тесное сближение с этим гигантом могло бы привести к разрушению Фаэтона. Ага! Наконец-то! Решающий аргумент? Последняя капля? Как бы не так! Если бы такое сближение произошло, то оно было бы роковым для Фаэтона, но не осталось бы без последствий и для самого Юпитера. Система его галилеевых спутников была бы искорежена возмущениями до такой степени, что на ее восстановление даже гигант Юпитер затратил бы 2 миллиарда лет! А мы оперируем датой катастрофы всего 16 миллионов лет назад… Да, по-видимому, и для многих форм жизни на Земле такая катастрофа в Солнечной системе не прошла бы бесследно. Дело нешуточное. Против разрушения массивной планеты, да к тому же произошедшего всего 16 миллионов лет назад, есть еще аргумент. Падения крупных осколков астероидов на Землю завершаются образованием кратеров на ее поверхности. Наша планета хранит на своем теле немало гигантских космических ран, называемых астроблемами. Так, на территории нашей страны крупнейшая астроблема обнаружена недалеко от устья реки Попигай на севере Сибири. Исследования показали, что астроблема возникла при падении астероида диаметром в несколько километров 30 миллионов лет назад. При этом образовался кратер чудовищных размеров — поперечник его составлял около 100 километров! Со временем кратер постарел, разрушился, был затянут наносами и окончательно потерял свой некогда впечатляющий вид. Кстати, на одной из таких затянутых временем астроблеме стоит город Калуга. Из тех астроблем, которые выявлены сейчас, многие чрезвычайно стары: возраст некоторых из них достигает 700 миллионов лет! Вы, вероятно, слышали, дорогие читатели, что 65 миллионов лет назад на Земле произошло нечто труднообъяснимое. В результате какого-то грозного и, по-видимому, внезапного события вымерли целые виды животного мира. Навсегда исчезли динозавры, летающие ящеры и другие «сказочные» представители фауны. Эпоха вымирания продолжительностью всего около 200 лет уничтожающим смерчем пронеслась по временной шкале нашей планеты. Осадочные породы океанических отложений, сформировавшихся в то время, дают нам документальные подтверждения скоротечности драматизма смертоносного события. Гипотезы, объясняющие причину столь необычной катастрофы, нагромождались одна на другую — от достаточно правдоподобных до самых фантастических. Здесь и внезапное наступление ледникового периода, и даже смена полюсов магнитного поля Земли! Очень интересна гипотеза о гибели динозавров вследствие взрыва сверхновой звезды. Факт наблюдения такого явления сравнительно редок. Так, история донесла до нас сведения из Древнего Китая о наблюдении в созвездии Тельца «звезды-гостьи». Эта звезда, вспыхнувшая внезапно, пылала на небе ярче Венеры. После ее угасания на месте взрыва сверхновой образовалась знаменитая Крабовидная туманность, которую вы можете увидеть в телескоп. Следующая сверхновая наблюдалась в эпоху царствования Ивана Грозного в 1572 году в созвездии Кассиопеи, и последняя сверхновая, которую можно было свободно видеть невооруженным глазом, — в 1604 году в созвездии Змееносца. Взрывы сверхновых — это взрывы такой чудовищной силы, что их светимость внезапно возрастает в миллиарды раз! Можете себе представить, какую энергию выделяют при этом такие звезды. В нашей Галактике известно около 100 ос-статков сверхновых звезд, являющихся до сих пор мощными источниками излучения различных типов. А в феврале 1987 года Еспыхнула сверхновая звезда в одной из ближайших к нам галактик — Большом Магеллановом Облаке. К огромному сожалению, Магелланово Облако не видно в северном полушарии, и мы с вами оказались лишь символическими свидетелями появления «звезды-гостьи» в соседней галактике. Жителям южного полушария в этом смысле больше повезло. Сверхновая вспыхнула 180 тысяч лет назад, и только сейчас свет ее вспышки достиг Земли: так далеко расположена одна из ближайших к нам галактик. Вспышки сверхновых порождают мощнейшие потоки гамма-излучения, гибельного для живых организмов. Таким образом, если 65 миллионов лет назад где-то поблизости от Солнечной системы произошел взрыв сверхновой и атмосфера Земли не справилась со своими защитными функциями и пропустила часть смертоносного излучения к земной поверхности, то от лучевой болезни должны были погибнуть не только динозавры, но и большинство других обитателей планеты. Однако нас с вами больше всего заинтересует одна из последних гипотез, родившаяся в мозговом центре группы американских ученых, возглавляемой Луисом Альварезом. При исследовании слоя глины, относящегося к эпохе описанной катастрофы, было обнаружено повышенное содержание иридия, химического элемента VIII группы Периодической системы Менделеева, относящегося к платиновым металлам. Иридий имеет рекордную плотность 22,4 г/см3. В жизни нам практически не приходится встречаться с этим уникальным элементом. Исключение, пожалуй, составляют обладатели лучших в мире авторучек: их вечные перья изготавливаются из сплавов, содержащих иридий. Иридия на Земле чрезвычайно мало, поэтому любая жила в породе с избытком иридия хронологически сопоставима с эпохой поступления этого редкого металла из космического пространства. Астероиды богаты этим замечательным элементом, и поэтому вполне правомерно предположение, что источником иридия в период катастрофического исчезновения динозавров мог быть астероид. Тем более, что метеориты — эти осколки астероидов — всегда содержат иридий. Таким образом, предполагается, что астероид поперечником около 10 километров врезался в Землю, и в результате чудовищного взрыва в атмосферу поднялись тысячи кубических километров образовавшейся пыли. Эта страшная туча на несколько лет преградила доступ солнечным лучам, и в результате наступившей вселенской тьмы на Земле прервался процесс живительного фотосинтеза. Наступил мировой голод. Практически все позвоночные массивнее 20–30 килограммов погибли голодной смертью. Как видите, и эта драматическая версия опровергает гипотезу о Фаэтоне. Если пятая планета взорвалась 16 миллионов лет назад, то откуда же взялся астероид, упавший на Землю 65 миллионов лет назад? Стакан спирта и капля масла или что-то другое?Итак, если Фаэтона не было, то как быть с правилом Тициуса — Боде, а главное, как тогда образовались астероиды? Чтобы хоть как-то ответить на этот вопрос, придется очень бегло осветить вопрос вопросов: а как возникла Земля? Как вообще возникла Солнечная система? Не будем обольщаться, окончательного ответа еще нет, но правдоподобные гипотезы, подкрепленные многочисленными конкретными свидетельствами, существуют. Еще в 1796 году французский математик Пьер Лаплас научно обосновывал гипотезу о том, что планеты образовались из газового облака. В процессе вращения вокруг своего центра масс облако стало сжиматься под действием собственного тяготения и по мере сжатия регулярно сбрасывало с себя верхнюю оболочку в виде концентрических колец. В дальнейшем каждое кольцо конденсировалось в планету, а оставшаяся внутренняя часть облака сформировалась в Солнце. Лаплас демонстрировал «отделение» будущих планет от Солнца следующим образом. В сосуд со спиртом опускалась капля масла, нанизанная на иглу. Лаплас начинал быстро вращать иглу, и от капли последовательно отделялись мелкие капельки. Стакан спирта и капля масла — вот вам и модель Солнечной системы! Гипотеза Лапласа жила достаточно долго, но при более глубоком анализе в ней обнаружилось несколько изъянов, в частности, неясно было, почему Солнце вращается слишком медленно. Очень интересная гипотеза была развита английским астрофизиком Джеймсом Джинсом. Согласно ей мимо Солнца прошла другая звезда и своим гравитационным полем вытянула из нашего светила часть вещества в форме веретена. Звезда удалилась, а веретено осталось и начало закручиваться вокруг Солнца. При этом оно распалось на несколько частей, каждая из которых стала впоследствии планетой. Крупнейшие планеты Юпитер и Сатурн оказались именно там, где была самая толстая часть веретена. Однако и здесь наступило разочарование, поскольку такая модель противоречила многим астрофизическим данным, на которых мы не будем подробно останавливаться. Еще одна «звездная» гипотеза была предложена также английским астрофизиком Фредом Хойлом. Когда-то Солнце не было так одиноко, а соседствовало с другой звездой — своей компаньонкой. Все было прекрасно до тех пор, пока вдруг соседка не взорвалась как сверхновая. Под действием реактивной силы взрыва остаток звезды улетел в межзвездное пространство, оставив на память Солнцу часть сброшенной оболочки, из фрагментов которой образовались планеты. Но и эта красивая гипотеза не выдержала критики. Достаточно долго существовала гипотеза советского астронома Отто Юльевича Шмидта о захвате Солнцем роя холодных тел, из которых «слепились» планеты. Однако всех проблем и она не решила. Современная модель происхождения Солнечной системы предполагает одновременное образование Солнца и планет из огромной массы газа, состоящего преимущественно из водорода. Ее называют солнечной туманностью. Под действием гравитационных сил газовая туманность сжималась таким образом, что центральная область ее становилась наиболее плотной. Именно там возникло Солнце, повлиявшее на дальнейшую судьбу всего облака. Комбинированное воздействие гравитационных сил и солнечного излучения разрушило первоначальную структуру облака. В нем появились разрежения и сгущения (протопланеты), захватывающие все попадающееся на их пути вещество. Именно из наиболее массивных протопланет образовались планеты. При этом на Солнце уже зажегся ядерный реактор, пережигающий водород в гелий. Таким образом 4,6 миллиарда лет назад Солнечная система сформировалась такой, какую мы с вами сейчас наблюдаем. Астероиды — остатки промежуточных тел, из которых создавались планеты, сохранились до нашего времени. Они так и не сумели сформироваться в планету из-за близости массивного Юпитера. Планета-гигант своим воздействием увеличивала относительные скорости астероидов и довела этот процесс до такого состояния, что кинетическая энергия астероидов превысила гравитационную, а в таких условиях они уже не могли «слипаться» при встрече. Наоборот, каждое столкновение вело к взаимному дроблению, а не объединению. Так бесславно заканчивается столь многообещающая поначалу гипотеза о Фаэтоне. Это не должно вас огорчать. В конце концов наше близкое знакомство с могуществом Юпитера — достаточно весомая компенсация за это разочарование. И кроме того, правило Тициуса — Боде еще никем теоретически не обосновано. Может быть, в его точном решении астероиды изначально предусмотрены? Стоит об этом подумать, а? |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх |
||||
|